3.2 KiB
3.2 KiB
title | description | menu | weight | flux/v0/tags | introduced | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kaufmansAMA() function | `kaufmansAMA()` calculates the Kaufman’s Adaptive Moving Average (KAMA) using values in input tables. |
|
101 |
|
0.40.0 |
kaufmansAMA()
calculates the Kaufman’s Adaptive Moving Average (KAMA) using
values in input tables.
Kaufman’s Adaptive Moving Average is a trend-following indicator designed to account for market noise or volatility.
Function type signature
(<-tables: stream[A], n: int, ?column: string) => stream[B] where A: Record, B: Record
{{% caption %}} For more information, see Function type signatures. {{% /caption %}}
Parameters
n
({{< req >}}) Period or number of points to use in the calculation.
column
Column to operate on. Default is _value
.
tables
Input data. Default is piped-forward data (<-
).
Examples
Calculate Kaufman's Adaptive Moving Average for input data
import "sampledata"
sampledata.int()
|> kaufmansAMA(n: 3)
{{< expand-wrapper >}} {{% expand "View example input and output" %}}
Input data
_time | _value | *tag |
---|---|---|
2021-01-01T00:00:00Z | -2 | t1 |
2021-01-01T00:00:10Z | 10 | t1 |
2021-01-01T00:00:20Z | 7 | t1 |
2021-01-01T00:00:30Z | 17 | t1 |
2021-01-01T00:00:40Z | 15 | t1 |
2021-01-01T00:00:50Z | 4 | t1 |
_time | _value | *tag |
---|---|---|
2021-01-01T00:00:00Z | 19 | t2 |
2021-01-01T00:00:10Z | 4 | t2 |
2021-01-01T00:00:20Z | -3 | t2 |
2021-01-01T00:00:30Z | 19 | t2 |
2021-01-01T00:00:40Z | 13 | t2 |
2021-01-01T00:00:50Z | 1 | t2 |
Output data
_time | _value | *tag |
---|---|---|
2021-01-01T00:00:30Z | 9.72641183951902 | t1 |
2021-01-01T00:00:40Z | 10.097401019601417 | t1 |
2021-01-01T00:00:50Z | 9.972614968115325 | t1 |
_time | _value | *tag |
---|---|---|
2021-01-01T00:00:30Z | -2.9084287200832466 | t2 |
2021-01-01T00:00:40Z | -2.142970089472789 | t2 |
2021-01-01T00:00:50Z | -2.0940721758134693 | t2 |
{{% /expand %}} {{< /expand-wrapper >}}