docs-v2/content/shared/v3-core-plugins/_index.md

21 KiB
Raw Permalink Blame History

Use the Processing Engine in {{% product-name %}} to extend your database with custom Python code. Trigger your code on write, on a schedule, or on demand to automate workflows, transform data, and create API endpoints.

What is the Processing Engine?

The Processing Engine is an embedded Python virtual machine that runs inside your {{% product-name %}} database. You configure triggers to run your Python plugin code in response to:

  • Data writes - Process and transform data as it enters the database
  • Scheduled events - Run code at defined intervals or specific times
  • HTTP requests - Expose custom API endpoints that execute your code

You can use the Processing Engine's in-memory cache to manage state between executions and build stateful applications directly in your database.

This guide walks you through setting up the Processing Engine, creating your first plugin, and configuring triggers that execute your code on specific events.

Before you begin

Ensure you have:

  • A working {{% product-name %}} instance
  • Access to command line
  • Python installed if you're writing your own plugin
  • Basic knowledge of the InfluxDB CLI

Once you have all the prerequisites in place, follow these steps to implement the Processing Engine for your data automation needs.

  1. Set up the Processing Engine
  2. Add a Processing Engine plugin
  3. Set up a trigger
  4. Advanced trigger configuration

Set up the Processing Engine

To activate the Processing Engine, start your {{% product-name %}} server with the --plugin-dir flag. This flag tells InfluxDB where to load your plugin files.

{{% code-placeholders "NODE_ID|OBJECT_STORE_TYPE|PLUGIN_DIR" %}}

influxdb3 serve \
  --NODE_ID \
  --object-store OBJECT_STORE_TYPE \
  --plugin-dir PLUGIN_DIR

{{% /code-placeholders %}}

In the example above, replace the following:

  • {{% code-placeholder-key %}}NODE_ID{{% /code-placeholder-key %}}: Unique identifier for your instance
  • {{% code-placeholder-key %}}OBJECT_STORE_TYPE{{% /code-placeholder-key %}}: Type of object store (for example, file or s3)
  • {{% code-placeholder-key %}}PLUGIN_DIR{{% /code-placeholder-key %}}: Absolute path to the directory where plugin files are stored. Store all plugin files in this directory or its subdirectories.

Configure distributed environments

When running {{% product-name %}} in a distributed setup, follow these steps to configure the Processing Engine:

  1. Decide where each plugin should run
    • Data processing plugins, such as WAL plugins, run on ingester nodes
    • HTTP-triggered plugins run on nodes handling API requests
    • Scheduled plugins can run on any configured node
  2. Enable plugins on the correct instance
  3. Maintain identical plugin files across all instances where plugins run
    • Use shared storage or file synchronization tools to keep plugins consistent

[!Note]

Provide plugins to nodes that run them

Configure your plugin directory on the same system as the nodes that run the triggers and plugins.

Add a Processing Engine plugin

A plugin is a Python script that defines a specific function signature for a trigger (trigger spec). When the specified event occurs, InfluxDB runs the plugin.

Choose a plugin strategy

You have two main options for adding plugins to your InfluxDB instance:

Use example plugins

InfluxData provides a public repository of example plugins that you can use immediately.

Browse plugin examples

Visit the influxdb3_plugins repository to find examples for:

  • Data transformation: Process and transform incoming data
  • Alerting: Send notifications based on data thresholds
  • Aggregation: Calculate statistics on time series data
  • Integration: Connect to external services and APIs
  • System monitoring: Track resource usage and health metrics

Add example plugins

You can either copy a plugin or retrieve it directly from the repository:

{{< code-tabs-wrapper >}}

{{% code-tabs %}} Copy locally Fetch via gh: {{% /code-tabs %}}

{{% code-tab-content %}}

# Clone the repository
git clone https://github.com/influxdata/influxdb3_plugins.git
   
# Copy a plugin to your configured plugin directory
cp influxdb3_plugins/examples/schedule/system_metrics/system_metrics.py /path/to/plugins/

{{% /code-tab-content %}}

{{% code-tab-content %}}

# To retrieve and use a plugin directly from GitHub,
#  use the `gh:` prefix in the plugin filename:
influxdb3 create trigger \
    --trigger-spec "every:1m" \
    --plugin-filename "gh:examples/schedule/system_metrics/system_metrics.py" \
    --database my_database \
    system_metrics

{{% /code-tab-content %}}

{{< /code-tabs-wrapper >}}

Plugins have various functions such as:

  • Receive plugin-specific arguments (such as written data, call time, or an HTTP request)
  • Access keyword arguments (as args) passed from trigger arguments configurations
  • Access the influxdb3_local shared API to write data, query data, and managing state between executions

For more information about available functions, arguments, and how plugins interact with InfluxDB, see how to Extend plugins.

Create a custom plugin

To build custom functionality, you can create your own Processing Engine plugin.

Prerequisites

Before you begin, make sure:

  • The Processing Engine is enabled on your {{% product-name %}} instance.
  • Youve configured the --plugin-dir where plugin files are stored.
  • You have access to that plugin directory.

Steps to create a plugin:

Choose your plugin type

Choose a plugin type based on your automation goals:

Plugin Type Best For Trigger Type
Data write Processing data as it arrives table: or all_tables
Scheduled Running code at specific intervals or times every: or cron:
HTTP request Running code on demand via API endpoints path:

Create your plugin file

  • Create a .py file in your plugins directory
  • Add the appropriate function signature based on your chosen plugin type
  • Write your processing logic inside the function

After writing your plugin, create a trigger to connect it to a database event and define when it runs.

Create a data write plugin

Use a data write plugin to process data as it's written to the database. Ideal use cases include:

  • Data transformation and enrichment
  • Alerting on incoming values
  • Creating derived metrics
def process_writes(influxdb3_local, table_batches, args=None):
    # Process data as it's written to the database
    for table_batch in table_batches:
        table_name = table_batch["table_name"]
        rows = table_batch["rows"]
        
        # Log information about the write
        influxdb3_local.info(f"Processing {len(rows)} rows from {table_name}")
        
        # Write derived data back to the database
        line = LineBuilder("processed_data")
        line.tag("source_table", table_name)
        line.int64_field("row_count", len(rows))
        influxdb3_local.write(line)

Create a scheduled plugin

Scheduled plugins run at defined intervals. Use them for:

  • Periodic data aggregation
  • Report generation
  • System health checks
def process_scheduled_call(influxdb3_local, call_time, args=None):
    # Run code on a schedule
    
    # Query recent data
    results = influxdb3_local.query("SELECT * FROM metrics WHERE time > now() - INTERVAL '1 hour'")
    
    # Process the results
    if results:
        influxdb3_local.info(f"Found {len(results)} recent metrics")
    else:
        influxdb3_local.warn("No recent metrics found")

Create an HTTP request plugin

HTTP request plugins respond to API calls. Use them for:

  • Creating custom API endpoints
  • Webhooks for external integrations
  • User interfaces for data interaction
def process_request(influxdb3_local, query_parameters, request_headers, request_body, args=None):
    # Handle HTTP requests to a custom endpoint
    
    # Log the request parameters
    influxdb3_local.info(f"Received request with parameters: {query_parameters}")
    
    # Process the request body
    if request_body:
        import json
        data = json.loads(request_body)
        influxdb3_local.info(f"Request data: {data}")
    
    # Return a response (automatically converted to JSON)
    return {"status": "success", "message": "Request processed"}

Next steps

After writing your plugin:

Set up a trigger

Understand trigger types

Plugin Type Trigger Specification When Plugin Runs
Data write table:<TABLE_NAME> or all_tables When data is written to tables
Scheduled every:<DURATION> or cron:<EXPRESSION> At specified time intervals
HTTP request path:<ENDPOINT_PATH> When HTTP requests are received

Use the create trigger command

Use the influxdb3 create trigger command with the appropriate trigger specification:

{{% code-placeholders "SPECIFICATION|PLUGIN_FILE|DATABASE_NAME|TRIGGER_NAME" %}}

influxdb3 create trigger \
  --trigger-spec SPECIFICATION \
  --plugin-filename PLUGIN_FILE \
  --database DATABASE_NAME \
  TRIGGER_NAME

{{% /code-placeholders %}}

In the example above, replace the following:

  • {{% code-placeholder-key %}}SPECIFICATION{{% /code-placeholder-key %}}: Trigger specification
  • {{% code-placeholder-key %}}PLUGIN_FILE{{% /code-placeholder-key %}}: Plugin filename relative to your configured plugin directory
  • {{% code-placeholder-key %}}DATABASE_NAME{{% /code-placeholder-key %}}: Name of the database
  • {{% code-placeholder-key %}}TRIGGER_NAME{{% /code-placeholder-key %}}: Name of the new trigger

[!Note] When specifying a local plugin file, the --plugin-filename parameter is relative to the --plugin-dir configured for the server. You don't need to provide an absolute path.

Trigger specification examples

Data write example

# Trigger on writes to a specific table
# The plugin file must be in your configured plugin directory
influxdb3 create trigger \
  --trigger-spec "table:sensor_data" \
  --plugin-filename "process_sensors.py" \
  --database my_database \
  sensor_processor

# Trigger on writes to all tables
influxdb3 create trigger \
  --trigger-spec "all_tables" \
  --plugin-filename "process_all_data.py" \
  --database my_database \
  all_data_processor

The trigger runs when the database flushes ingested data for the specified tables to the Write-Ahead Log (WAL) in the Object store (default is every second).

The plugin receives the written data and table information.

Scheduled events example

# Run every 5 minutes
influxdb3 create trigger \
  --trigger-spec "every:5m" \
  --plugin-filename "hourly_check.py" \
  --database my_database \
  regular_check

# Run on a cron schedule (8am daily)
# Supports extended cron format with seconds
influxdb3 create trigger \
  --trigger-spec "cron:0 0 8 * * *" \
  --plugin-filename "daily_report.py" \
  --database my_database \
  daily_report

The plugin receives the scheduled call time.

HTTP requests example

# Create an endpoint at /api/v3/engine/webhook
influxdb3 create trigger \
  --trigger-spec "request:webhook" \
  --plugin-filename "webhook_handler.py" \
  --database my_database \
  webhook_processor

Access your endpoint available at /api/v3/engine/<ENDPOINT_PATH>. To run the plugin, send a GET or POST request to the endpoint--for example:

curl http://{{% influxdb/host %}}/api/v3/engine/webhook

The plugin receives the HTTP request object with methods, headers, and body.

Pass arguments to plugins

Use trigger arguments to pass configuration from a trigger to the plugin it runs. You can use this for:

  • Threshold values for monitoring
  • Connection properties for external services
  • Configuration settings for plugin behavior
influxdb3 create trigger \
  --trigger-spec "every:1h" \
  --plugin-filename "threshold_check.py" \
  --trigger-arguments threshold=90,notify_email=admin@example.com \
  --database my_database \
  threshold_monitor

The arguments are passed to the plugin as a Dict[str, str] where the key is the argument name and the value is the argument value:

def process_scheduled_call(influxdb3_local, call_time, args=None):
    if args and "threshold" in args:
        threshold = float(args["threshold"])
        email = args.get("notify_email", "default@example.com")
        
        # Use the arguments in your logic
        influxdb3_local.info(f"Checking threshold {threshold}, will notify {email}")

Control trigger execution

By default, triggers run synchronously—each instance waits for previous instances to complete before executing.

To allow multiple instances of the same trigger to run simultaneously, configure triggers to run asynchronously:

# Allow multiple trigger instances to run simultaneously
influxdb3 create trigger \
  --trigger-spec "table:metrics" \
  --plugin-filename "heavy_process.py" \
  --run-asynchronous \
  --database my_database \
  async_processor

Configure error handling for a trigger

To configure error handling behavior for a trigger, use the --error-behavior <ERROR_BEHAVIOR> CLI option with one of the following values:

  • log (default): Log all plugin errors to stdout and the system.processing_engine_logs system table.
  • retry: Attempt to run the plugin again immediately after an error.
  • disable: Automatically disable the plugin when an error occurs (can be re-enabled later via CLI).
# Automatically retry on error
influxdb3 create trigger \
  --trigger-spec "table:important_data" \
  --plugin-filename "critical_process.py" \
  --error-behavior retry \
  --database my_database \
  critical_processor

# Disable the trigger on error
influxdb3 create trigger \
  --trigger-spec "request:webhook" \
  --plugin-filename "webhook_handler.py" \
  --error-behavior disable \
  --database my_database \
  auto_disable_processor

Advanced trigger configuration

After creating basic triggers, you can enhance your plugins with these advanced features:

Access community plugins from GitHub

Skip downloading plugins by referencing them directly from GitHub:

# Create a trigger using a plugin from GitHub
influxdb3 create trigger \
  --trigger-spec "every:1m" \
  --plugin-filename "gh:examples/schedule/system_metrics/system_metrics.py" \
  --database my_database \
  system_metrics

This approach:

  • Ensures you're using the latest version
  • Simplifies updates and maintenance
  • Reduces local storage requirements

Configure your triggers

Pass configuration arguments

Provide runtine configuration to your plugins:

# Pass threshold and email settings to a plugin
Provide runtime configuration to your plugins:
  --trigger-spec "every:1h" \
  --plugin-filename "threshold_check.py" \
  --trigger-arguments threshold=90,notify_email=admin@example.com \
  --database my_database \
  threshold_monitor

Your plugin accesses these values through the args parameter:

def process_scheduled_call(influxdb3_local, call_time, args=None):
    if args and "threshold" in args:
        threshold = float(args["threshold"])
        email = args.get("notify_email", "default@example.com")
        
        # Use the arguments in your logic
        influxdb3_local.info(f"Checking threshold {threshold}, will notify {email}")

Set execution mode

Choose between synchronous (default) or asynchronous execution:

# Allow multiple trigger instances to run simultaneously
influxdb3 create trigger \
  --trigger-spec "table:metrics" \
  --plugin-filename "heavy_process.py" \
  --run-asynchronous \
  --database my_database \
  async_processor

Use asynchronous execution when:

  • Processing might take longer than the trigger interval
  • Multiple events need to be handled simultaneously
  • Performance is more important than sequential execution

Configure error handling

Control how your trigger responds to errors:

# Automatically retry on error
influxdb3 create trigger \
  --trigger-spec "table:important_data" \
  --plugin-filename "critical_process.py" \
  --error-behavior retry \
  --database my_database \
  critical_processor

Install Python dependencies

Use the influxdb3 install package command to add third-party libraries (like pandas, requests, or influxdb3-python) to your plugin environment.
This installs packages into the Processing Engines embedded Python environment to ensure compatibility with your InfluxDB instance.

{{% code-placeholders "CONTAINER_NAME|PACKAGE_NAME" %}}

{{< code-tabs-wrapper >}}

{{% code-tabs %}} CLI Docker {{% /code-tabs %}}

{{% code-tab-content %}}

# Use the CLI to install a Python package
influxdb3 install package pandas

{{% /code-tab-content %}}

{{% code-tab-content %}}

# Use the CLI to install a Python package in a Docker container
docker exec -it CONTAINER_NAME influxdb3 install package pandas

{{% /code-tab-content %}}

{{< /code-tabs-wrapper >}}

These examples install the specified Python package (for example, pandas) into the Processing Engines embedded virtual environment.

  • Use the CLI command when running InfluxDB directly on your system.
  • Use the Docker variant if you're running InfluxDB in a containerized environment.

[!Important]

Use bundled Python for plugins

When you start the server with the --plugin-dir option, InfluxDB 3 creates a Python virtual environment (<PLUGIN_DIR>/venv) for your plugins. If you need to create a custom virtual environment, use the Python interpreter bundled with InfluxDB 3. Don't use the system Python. Creating a virtual environment with the system Python (for example, using python -m venv) can lead to runtime errors and plugin failures.

For more information, see the processing engine README.

{{% /code-placeholders %}}

InfluxDB creates a Python virtual environment in your plugins directory with the specified packages installed.

{{% show-in "enterprise" %}}

Distributed cluster considerations

When you deploy {{% product-name %}} in a multi-node environment, configure each node based on its role and the plugins it runs.

Match plugin types to the correct node

Each plugin must run on a node that supports its trigger type:

Plugin type Trigger spec Runs on
Data write table: or all_tables Ingester nodes
Scheduled every: or cron: Any node with scheduler
HTTP request path: Nodes that serve API traffic

For example:

  • Run write-ahead log (WAL) plugins on ingester nodes.
  • Run scheduled plugins on any node configured to execute them.
  • Run HTTP-triggered plugins on querier nodes or any node that handles HTTP endpoints.

Place all plugin files in the --plugin-dir directory configured for each node.

[!Note] Triggers fail if the plugin file isnt available on the node where it runs.

Route third-party clients to querier nodes

External tools—such as Grafana, custom dashboards, or REST clients—must connect to querier nodes in your InfluxDB Enterprise deployment.

Examples

  • Grafana: When adding InfluxDB 3 as a Grafana data source, use a querier node URL, such as: https://querier.example.com:8086
  • REST clients: Applications using POST /api/v3/query/sql or similar endpoints must target a querier node.

{{% /show-in %}}