docs-v2/content/flux/v0/stdlib/universe/kaufmansama.md

121 lines
3.2 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

---
title: kaufmansAMA() function
description: >
`kaufmansAMA()` calculates the Kaufmans Adaptive Moving Average (KAMA) using
values in input tables.
menu:
flux_v0_ref:
name: kaufmansAMA
parent: universe
identifier: universe/kaufmansAMA
weight: 101
flux/v0/tags: [transformations]
introduced: 0.40.0
---
<!------------------------------------------------------------------------------
IMPORTANT: This page was generated from comments in the Flux source code. Any
edits made directly to this page will be overwritten the next time the
documentation is generated.
To make updates to this documentation, update the function comments above the
function definition in the Flux source code:
https://github.com/influxdata/flux/blob/master/stdlib/universe/universe.flux#L1211-L1214
Contributing to Flux: https://github.com/influxdata/flux#contributing
Fluxdoc syntax: https://github.com/influxdata/flux/blob/master/docs/fluxdoc.md
------------------------------------------------------------------------------->
`kaufmansAMA()` calculates the Kaufmans Adaptive Moving Average (KAMA) using
values in input tables.
Kaufmans Adaptive Moving Average is a trend-following indicator designed to
account for market noise or volatility.
##### Function type signature
```js
(<-tables: stream[A], n: int, ?column: string) => stream[B] where A: Record, B: Record
```
{{% caption %}}
For more information, see [Function type signatures](/flux/v0/function-type-signatures/).
{{% /caption %}}
## Parameters
### n
({{< req >}})
Period or number of points to use in the calculation.
### column
Column to operate on. Default is `_value`.
### tables
Input data. Default is piped-forward data (`<-`).
## Examples
### Calculate Kaufman's Adaptive Moving Average for input data
```js
import "sampledata"
sampledata.int()
|> kaufmansAMA(n: 3)
```
{{< expand-wrapper >}}
{{% expand "View example input and output" %}}
#### Input data
| _time | _value | *tag |
| -------------------- | ------- | ---- |
| 2021-01-01T00:00:00Z | -2 | t1 |
| 2021-01-01T00:00:10Z | 10 | t1 |
| 2021-01-01T00:00:20Z | 7 | t1 |
| 2021-01-01T00:00:30Z | 17 | t1 |
| 2021-01-01T00:00:40Z | 15 | t1 |
| 2021-01-01T00:00:50Z | 4 | t1 |
| _time | _value | *tag |
| -------------------- | ------- | ---- |
| 2021-01-01T00:00:00Z | 19 | t2 |
| 2021-01-01T00:00:10Z | 4 | t2 |
| 2021-01-01T00:00:20Z | -3 | t2 |
| 2021-01-01T00:00:30Z | 19 | t2 |
| 2021-01-01T00:00:40Z | 13 | t2 |
| 2021-01-01T00:00:50Z | 1 | t2 |
#### Output data
| _time | _value | *tag |
| -------------------- | ------------------ | ---- |
| 2021-01-01T00:00:30Z | 9.72641183951902 | t1 |
| 2021-01-01T00:00:40Z | 10.097401019601417 | t1 |
| 2021-01-01T00:00:50Z | 9.972614968115325 | t1 |
| _time | _value | *tag |
| -------------------- | ------------------- | ---- |
| 2021-01-01T00:00:30Z | -2.9084287200832466 | t2 |
| 2021-01-01T00:00:40Z | -2.142970089472789 | t2 |
| 2021-01-01T00:00:50Z | -2.0940721758134693 | t2 |
{{% /expand %}}
{{< /expand-wrapper >}}