7.4 KiB
The example WAL plugin monitors data write operations in InfluxDB 3 by tracking row counts for each table during WAL (Write-Ahead Log) flush events.
It creates summary reports in a write_reports
table to help analyze data ingestion patterns and rates.
The plugin can optionally double-count rows for a specified table to demonstrate configurable behavior.
Configuration
Optional parameters
Parameter | Type | Default | Description |
---|---|---|---|
double_count_table |
string | none | Table name for which to double the row count in write reports (for testing/demonstration) |
Installation steps
- Start {{% product-name %}} with the Processing Engine enabled (
--plugin-dir /path/to/plugins
)influxdb3 serve \ --node-id node0 \ --object-store file \ --data-dir ~/.influxdb3 \ --plugin-dir ~/.plugins
Trigger setup
Write monitoring
Monitor all table writes and generate write reports:
influxdb3 create trigger \
--database monitoring \
--plugin-filename examples/wal_plugin/wal_plugin.py \
--trigger-spec "all_tables" \
wal_monitoring
Write monitoring with special handling
Monitor writes with special handling for a specific table:
influxdb3 create trigger \
--database monitoring \
--plugin-filename examples/wal_plugin/wal_plugin.py \
--trigger-spec "all_tables" \
--trigger-arguments 'double_count_table=temperature' \
wal_monitoring_special
Example usage
Example: Basic write monitoring
Set up write monitoring to track data ingestion:
# Create the monitoring trigger
influxdb3 create trigger \
--database testdb \
--plugin-filename examples/wal_plugin/wal_plugin.py \
--trigger-spec "all_tables" \
write_monitor
# Write test data to various tables
influxdb3 write \
--database testdb \
"temperature,location=office value=22.5"
influxdb3 write \
--database testdb \
"humidity,location=office value=45.2"
influxdb3 write \
--database testdb \
"pressure,location=office value=1013.25"
# The plugin automatically generates write reports in the `write_reports` measurement.
# Query the write reports
influxdb3 query \
--database testdb \
"SELECT * FROM write_reports ORDER BY time DESC"
Expected output
table_name | row_count | time
------------|-----------|-----
pressure | 1 | 2024-01-01T12:02:00Z
humidity | 1 | 2024-01-01T12:01:00Z
temperature | 1 | 2024-01-01T12:00:00Z
Example: Monitoring with special table handling
Monitor writes with doubled counting for temperature data:
# Create trigger with special handling
influxdb3 create trigger \
--database testdb \
--plugin-filename examples/wal_plugin/wal_plugin.py \
--trigger-spec "all_tables" \
--trigger-arguments 'double_count_table=temperature' \
write_monitor_special
# Write test data
influxdb3 write \
--database testdb \
"temperature,location=office value=22.5"
influxdb3 write \
--database testdb \
"humidity,location=office value=45.2"
# Query the write reports
influxdb3 query \
--database testdb \
"SELECT * FROM write_reports ORDER BY time DESC"
Expected output
table_name | row_count | time
------------|-----------|-----
humidity | 1 | 2024-01-01T12:01:00Z
temperature | 2 | 2024-01-01T12:00:00Z
Note: The temperature table shows a row count of 2 despite only writing 1 row, demonstrating the double_count_table
parameter.
Generated Measurements
write_reports
Tracks the number of rows written to each table during WAL flush events.
Tags:
table_name
: Name of the table that received writes
Fields:
row_count
: Number of rows written in this WAL flush (integer)
Special behavior:
- If
double_count_table
parameter matches the table name, the row count will be doubled - The plugin automatically skips the
write_reports
table to avoid infinite recursion
Code overview
Files
wal_plugin.py
: Main plugin code that processes write batches and generates reports
Main functions
process_writes(influxdb3_local, table_batches, args)
Entry point for processing write batches. Called each time data is written to the database.
Parameters:
influxdb3_local
: InfluxDB client for writing and loggingtable_batches
: List of table batches containing written dataargs
: Configuration arguments from trigger setup
Processing logic:
- Iterates through each table batch in the write operation
- Skips the
write_reports
table to prevent recursion - Counts rows in each batch
- Applies special handling if
double_count_table
matches - Writes report record to
write_reports
measurement
Logging
Logs are stored in the _internal
database in the system.processing_engine_logs
table. To view logs:
{{% code-placeholders "AUTH_TOKEN" %}}
influxdb3 query \
--database _internal \
--token AUTH_TOKEN \
"SELECT * FROM system.processing_engine_logs WHERE trigger_name = 'wal_monitoring'"
{{% /code-placeholders %}}
Replace {{% code-placeholder-key %}}AUTH_TOKEN
{{% /code-placeholder-key %}} with your {{% token-link "admin" %}}.
Troubleshooting
Common issues
Issue: No write reports appearing
Solution:
-
Verify the trigger was created successfully: {{% code-placeholders "DATABASE_NAME|AUTH_TOKEN" %}}
influxdb3 show summary --database DATABASE_NAME --token AUTH_TOKEN
{{% /code-placeholders %}}
Replace the following:
- {{% code-placeholder-key %}}
DATABASE_NAME
{{% /code-placeholder-key %}}: the name of the database - {{% code-placeholder-key %}}
AUTH_TOKEN
{{% /code-placeholder-key %}}: your {{% token-link "database" %}}{{% show-in "enterprise" %}} with read permissions on the specified database{{% /show-in %}}
- {{% code-placeholder-key %}}
-
Check that data is actually being written to tables other than
write_reports
-
Review logs for errors
Issue: Infinite recursion with write_reports
Solution: This shouldn't happen as the plugin automatically skips the write_reports
table, but if you see this:
- Check that you haven't modified the plugin to remove the skip logic
- Verify the table name comparison is working correctly
Issue: Row counts seem incorrect
Solution:
- Remember that row counts represent WAL flush batches, not individual write operations
- Multiple write operations may be batched together before the plugin processes them
- Check if
double_count_table
is set and affecting specific tables
Performance considerations
- This plugin processes every write operation, so it adds minimal overhead
- The plugin generates one additional write per table per WAL flush batch
- Consider the storage impact of write reports for high-volume systems
Use cases
- Write monitoring: Track data ingestion patterns and volumes
- Debugging: Identify which tables are receiving writes
- Performance analysis: Monitor write batch sizes and patterns
- Data validation: Verify expected write volumes
- Testing: Use
double_count_table
parameter for testing scenarios
Report an issue
For plugin issues, see the Plugins repository issues page.
Find support for {{% product-name %}}
The InfluxDB Discord server is the best place to find support for InfluxDB 3 Core and InfluxDB 3 Enterprise. For other InfluxDB versions, see the Support and feedback options.