docs-v2/content/influxdb/v2/query-data/common-queries/operate-on-columns.md

138 lines
7.1 KiB
Markdown

---
title: Operate on columns
description: >
Find and count unique values, recalculate the `_value` column, and use values to calculate a new column.
influxdb/v2/tags: [queries]
aliases:
- /influxdb/v2/query-data/common-queries/count_unique_values_for_column/
- /influxdb/v2/query-data/common-queries/recalculate_value_column/
- /influxdb/v2/query-data/common-queries/calculate_new_column/
menu:
influxdb_v2:
name: Operate on columns
parent: Common queries
weight: 100
---
Use the following common queries to operate on columns:
- [Find and count unique values in a column](#find-and-count-unique-values-in-a-column)
- [Recalculate the _values column](#recalculate-the-_values-column)
- [Calculate a new column](#calculate-a-new-column)
{{% note %}}
These examples use [NOAA water sample data](/influxdb/v2/reference/sample-data/#noaa-water-sample-data).
{{% /note %}}
## Find and count unique values in a column
Find and count the number of unique values in a specified column.
The following examples find and count unique locations where data was collected.
### Find unique values
This query:
- Uses [`group()`](/flux/v0/stdlib/universe/group/) to ungroup data and return results in a single table.
- Uses [`keep()`](/flux/v0/stdlib/universe/keep/) and [`unique()`](/flux/v0/stdlib/universe/unique/) to return unique values in the specified column.
```js
from(bucket: "noaa")
|> range(start: -30d)
|> group()
|> keep(columns: ["location"])
|> unique(column: "location")
```
#### Example results
| location |
|:-------- |
| coyote_creek |
| santa_monica |
### Count unique values
This query:
- Uses [`group()`](/flux/v0/stdlib/universe/group/) to ungroup data and return results in a single table.
- Uses [`keep()`](/flux/v0/stdlib/universe/keep/), [`unique()`](/flux/v0/stdlib/universe/unique/), and then [`count()`](/flux/v0/stdlib/universe/count/) to count the number of unique values.
```js
from(bucket: "noaa")
|> group()
|> unique(column: "location")
|> count(column: "location")
```
#### Example results
| location |
| ---------:|
| 2 |
## Recalculate the _values column
To recalculate the `_value` column, use the `with` operator in [`map()`](/flux/v0/stdlib/universe/map/) to overwrite the existing `_value` column.
The following query:
- Uses [`filter()`](/flux/v0/stdlib/universe/filter/) to filter the `average_temperature` measurement.
- Uses [`map()`](/flux/v0/stdlib/universe/map/) to convert Fahrenheit temperature values into Celsius.
```js
from(bucket: "noaa")
|> filter(fn: (r) => r._measurement == "average_temperature")
|> range(start: -30d)
|> map(fn: (r) => ({r with _value: (float(v: r._value) - 32.0) * 5.0 / 9.0} ))
```
| _field | _measurement | _start | _stop | _time | location | _value |
|:------ |:------------ |:------ |:----- |:----- |:-------- | ------: |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:00:00Z | coyote_creek | 27.77777777777778 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:06:00Z | coyote_creek | 22.77777777777778 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:12:00Z | coyote_creek | 30 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:18:00Z | coyote_creek | 31.666666666666668 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:24:00Z | coyote_creek | 25 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:30:00Z | coyote_creek | 21.11111111111111 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:36:00Z | coyote_creek | 28.88888888888889 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:42:00Z | coyote_creek | 24.444444444444443 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:48:00Z | coyote_creek | 29.444444444444443 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:54:00Z | coyote_creek | 26.666666666666668 |
| degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T01:00:00Z | coyote_creek | 21.11111111111111 |
| ••• | ••• | ••• | ••• | ••• | ••• | ••• |
## Calculate a new column
To use values in a row to calculate and add a new column, use `map()`.
This example below converts temperature from Fahrenheit to Celsius and maps the Celsius value to a new `celsius` column.
The following query:
- Uses [`filter()`](/flux/v0/stdlib/universe/filter/) to filter the `average_temperature` measurement.
- Uses [`map()`](/flux/v0/stdlib/universe/map/) to create a new column calculated from existing values in each row.
```js
from(bucket: "noaa")
|> filter(fn: (r) => r._measurement == "average_temperature")
|> range(start: -30d)
|> map(fn: (r) => ({r with celsius: (r._value - 32.0) * 5.0 / 9.0}))
```
#### Example results
| _start | _stop | _field | _measurement | location | _time | _value | celsius |
|:------ |:----- |:------: |:------------: |:--------: |:----- | ------:| -------:|
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:00:00Z | 82 | 27.78 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:06:00Z | 73 | 22.78 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:12:00Z | 86 | 30.00 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:18:00Z | 89 | 31.67 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:24:00Z | 77 | 25.00 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:30:00Z | 70 | 21.11 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:36:00Z | 84 | 28.89 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:42:00Z | 76 | 24.44 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:48:00Z | 85 | 29.44 |
| 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:54:00Z | 80 | 26.67 |
| ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• |