title |
description |
menu |
weight |
influxdb/v2/tags |
Calculate a weekly mean |
Calculate a weekly mean and add it to a new bucket.
|
influxdb_v2 |
name |
parent |
Calculate a weekly mean |
Common tasks |
|
|
202 |
|
{{% note %}}
This example uses NOAA water sample data.
{{% /note %}}
This example calculates a temperature weekly mean and stores it in a separate bucket.
The sample query performs the following operations:
- Uses
filter()
to select records with the average_temperature
measurement.
- Uses
range()
to define the start time.
- Uses
aggregateWindow()
to group records by week and compute the mean.
- Sends the weekly mean to a new bucket (
weekly_means
).
option task = {
name: "weekly-means",
every: 1w,
}
from(bucket: "noaa")
|> filter(fn: (r) => r._measurement == "average_temperature")
|> range(start: 2019-09-01T11:24:00Z)
|> aggregateWindow(every: 1w, fn: mean)
|> to(bucket: "weekly_means")
Example results
_start |
_stop |
_field |
_measurement |
location |
_value |
_time |
2019-09-01T11:24:00Z |
2020-10-19T20:39:49Z |
degrees |
average_temperature |
coyote_creek |
80.31005917159763 |
2019-09-05T00:00:00Z |
2019-09-01T11:24:00Z |
2020-10-19T20:39:49Z |
degrees |
average_temperature |
coyote_creek |
79.8422619047619 |
2019-09-12T00:00:00Z |
2019-09-01T11:24:00Z |
2020-10-19T20:39:49Z |
degrees |
average_temperature |
coyote_creek |
79.82710622710623 |
2019-09-19T00:00:00Z |
_start |
_stop |
_field |
_measurement |
location |
_value |
_time |
2019-09-01T11:24:00Z |
2020-10-19T20:39:49Z |
degrees |
average_temperature |
santa_monica |
80.19952494061758 |
2019-09-05T00:00:00Z |
2019-09-01T11:24:00Z |
2020-10-19T20:39:49Z |
degrees |
average_temperature |
santa_monica |
80.01964285714286 |
2019-09-12T00:00:00Z |
2019-09-01T11:24:00Z |
2020-10-19T20:39:49Z |
degrees |
average_temperature |
santa_monica |
80.20451 |
|