docs-v2/content/influxdb/v1/flux/guides/histograms.md

144 lines
9.5 KiB
Markdown

---
title: Create histograms with Flux
list_title: Histograms
description: >
Use the `histogram()` function to create cumulative histograms with Flux.
menu:
influxdb_v1:
name: Histograms
parent: Query with Flux
weight: 10
list_query_example: histogram
canonical: /influxdb/v2/query-data/flux/histograms/
alt_links:
v2: /influxdb/v2/query-data/flux/histograms/
---
Histograms provide valuable insight into the distribution of your data.
This guide walks through using Flux's `histogram()` function to transform your data into a **cumulative histogram**.
## histogram() function
The [`histogram()` function](/flux/v0/stdlib/universe/histogram) approximates the
cumulative distribution of a dataset by counting data frequencies for a list of "bins."
A **bin** is simply a range in which a data point falls.
All data points that are less than or equal to the bound are counted in the bin.
In the histogram output, a column is added (le) that represents the upper bounds of of each bin.
Bin counts are cumulative.
```js
from(bucket:"telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> histogram(bins: [0.0, 10.0, 20.0, 30.0])
```
> Values output by the `histogram` function represent points of data aggregated over time.
> Since values do not represent single points in time, there is no `_time` column in the output table.
## Bin helper functions
Flux provides two helper functions for generating histogram bins.
Each generates and outputs an array of floats designed to be used in the `histogram()` function's `bins` parameter.
### linearBins()
The [`linearBins()` function](/flux/v0/stdlib/universe/linearbins) generates a list of linearly separated floats.
```js
linearBins(start: 0.0, width: 10.0, count: 10)
// Generated list: [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, +Inf]
```
### logarithmicBins()
The [`logarithmicBins()` function](/flux/v0/stdlib/universe/logarithmicbins) generates a list of exponentially separated floats.
```js
logarithmicBins(start: 1.0, factor: 2.0, count: 10, infinity: true)
// Generated list: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, +Inf]
```
## Examples
### Generating a histogram with linear bins
```js
from(bucket:"telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> histogram(
bins: linearBins(
start:65.5,
width: 0.5,
count: 20,
infinity:false
)
)
```
###### Output table
```
Table: keys: [_start, _stop, _field, _measurement, host]
_start:time _stop:time _field:string _measurement:string host:string le:float _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------ ---------------------------- ----------------------------
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 65.5 5
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 66 6
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 66.5 8
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 67 9
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 67.5 9
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 68 10
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 68.5 12
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 69 12
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 69.5 15
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 70 23
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 70.5 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 71 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 71.5 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 72 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 72.5 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 73 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 73.5 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 74 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 74.5 30
2018-11-07T22:19:58.423658000Z 2018-11-07T22:24:58.423658000Z used_percent mem Scotts-MacBook-Pro.local 75 30
```
### Generating a histogram with logarithmic bins
```js
from(bucket:"telegraf/autogen")
|> range(start: -5m)
|> filter(fn: (r) =>
r._measurement == "mem" and
r._field == "used_percent"
)
|> histogram(
bins: logarithmicBins(
start:0.5,
factor: 2.0,
count: 10,
infinity:false
)
)
```
###### Output table
```
Table: keys: [_start, _stop, _field, _measurement, host]
_start:time _stop:time _field:string _measurement:string host:string le:float _value:float
------------------------------ ------------------------------ ---------------------- ---------------------- ------------------------ ---------------------------- ----------------------------
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 0.5 0
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 1 0
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 2 0
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 4 0
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 8 0
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 16 0
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 32 0
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 64 2
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 128 30
2018-11-07T22:23:36.860664000Z 2018-11-07T22:28:36.860664000Z used_percent mem Scotts-MacBook-Pro.local 256 30
```