docs-v2/content/flux/v0/stdlib/experimental/histogram.md

4.0 KiB

title description menu weight flux/v0/tags introduced
experimental.histogram() function `experimental.histogram()` approximates the cumulative distribution of a dataset by counting data frequencies for a list of bins.
flux_v0_ref
name parent identifier
experimental.histogram experimental experimental/histogram
101
transformations
0.112.0

experimental.histogram() approximates the cumulative distribution of a dataset by counting data frequencies for a list of bins.

A bin is defined by an upper bound where all data points that are less than or equal to the bound are counted in the bin. Bin counts are cumulative.

Function behavior

  • Outputs a single table for each input table.
  • Each output table represents a unique histogram.
  • Output tables have the same group key as the corresponding input table.
  • Drops columns that are not part of the group key.
  • Adds an le column to store upper bound values.
  • Stores bin counts in the _value column.
Function type signature
(<-tables: stream[{A with _value: float}], bins: [float], ?normalize: bool) => stream[{A with le: float, _value: float}]

{{% caption %}} For more information, see Function type signatures. {{% /caption %}}

Parameters

bins

({{< req >}}) List of upper bounds to use when computing histogram frequencies, including the maximum value of the data set.

This value can be set to positive infinity (float(v: "+Inf")) if no maximum is known.

Bin helper functions

The following helper functions can be used to generated bins.

  • linearBins()
  • logarithmicBins()

normalize

Convert count values into frequency values between 0 and 1. Default is false.

Note: Normalized histograms cannot be aggregated by summing their counts.

tables

Input data. Default is piped-forward data (<-).

Examples

Create a histogram from input data

import "experimental"
import "sampledata"

sampledata.float()
    |> experimental.histogram(
        bins: [
            0.0,
            5.0,
            10.0,
            15.0,
            20.0,
        ],
    )

{{< expand-wrapper >}} {{% expand "View example input and output" %}}

Input data

_time *tag _value
2021-01-01T00:00:00Z t1 -2.18
2021-01-01T00:00:10Z t1 10.92
2021-01-01T00:00:20Z t1 7.35
2021-01-01T00:00:30Z t1 17.53
2021-01-01T00:00:40Z t1 15.23
2021-01-01T00:00:50Z t1 4.43
_time *tag _value
2021-01-01T00:00:00Z t2 19.85
2021-01-01T00:00:10Z t2 4.97
2021-01-01T00:00:20Z t2 -3.75
2021-01-01T00:00:30Z t2 19.77
2021-01-01T00:00:40Z t2 13.86
2021-01-01T00:00:50Z t2 1.86

Output data

*tag le _value
t1 0 1
t1 5 2
t1 10 3
t1 15 4
t1 20 6
*tag le _value
t2 0 1
t2 5 3
t2 10 3
t2 15 4
t2 20 6

{{% /expand %}} {{< /expand-wrapper >}}