core/homeassistant/components/binary_sensor/trend.py

187 lines
6.3 KiB
Python

"""A sensor that monitors trends in other components."""
from collections import deque
import logging
import math
import voluptuous as vol
from homeassistant.components.binary_sensor import (
DEVICE_CLASSES_SCHEMA, ENTITY_ID_FORMAT, PLATFORM_SCHEMA,
BinarySensorDevice)
from homeassistant.const import (
ATTR_ENTITY_ID, ATTR_FRIENDLY_NAME, CONF_DEVICE_CLASS, CONF_ENTITY_ID,
CONF_FRIENDLY_NAME, STATE_UNKNOWN, CONF_SENSORS)
from homeassistant.core import callback
import homeassistant.helpers.config_validation as cv
from homeassistant.helpers.entity import generate_entity_id
from homeassistant.helpers.event import async_track_state_change
from homeassistant.util import utcnow
REQUIREMENTS = ['numpy==1.16.2']
_LOGGER = logging.getLogger(__name__)
ATTR_ATTRIBUTE = 'attribute'
ATTR_GRADIENT = 'gradient'
ATTR_MIN_GRADIENT = 'min_gradient'
ATTR_INVERT = 'invert'
ATTR_SAMPLE_DURATION = 'sample_duration'
ATTR_SAMPLE_COUNT = 'sample_count'
CONF_ATTRIBUTE = 'attribute'
CONF_INVERT = 'invert'
CONF_MAX_SAMPLES = 'max_samples'
CONF_MIN_GRADIENT = 'min_gradient'
CONF_SAMPLE_DURATION = 'sample_duration'
SENSOR_SCHEMA = vol.Schema({
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_ATTRIBUTE): cv.string,
vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA,
vol.Optional(CONF_FRIENDLY_NAME): cv.string,
vol.Optional(CONF_INVERT, default=False): cv.boolean,
vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int,
vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float),
vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int,
})
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Required(CONF_SENSORS): cv.schema_with_slug_keys(SENSOR_SCHEMA),
})
def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the trend sensors."""
sensors = []
for device_id, device_config in config[CONF_SENSORS].items():
entity_id = device_config[ATTR_ENTITY_ID]
attribute = device_config.get(CONF_ATTRIBUTE)
device_class = device_config.get(CONF_DEVICE_CLASS)
friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device_id)
invert = device_config[CONF_INVERT]
max_samples = device_config[CONF_MAX_SAMPLES]
min_gradient = device_config[CONF_MIN_GRADIENT]
sample_duration = device_config[CONF_SAMPLE_DURATION]
sensors.append(
SensorTrend(
hass, device_id, friendly_name, entity_id, attribute,
device_class, invert, max_samples, min_gradient,
sample_duration)
)
if not sensors:
_LOGGER.error("No sensors added")
return
add_entities(sensors)
class SensorTrend(BinarySensorDevice):
"""Representation of a trend Sensor."""
def __init__(self, hass, device_id, friendly_name, entity_id,
attribute, device_class, invert, max_samples,
min_gradient, sample_duration):
"""Initialize the sensor."""
self._hass = hass
self.entity_id = generate_entity_id(
ENTITY_ID_FORMAT, device_id, hass=hass)
self._name = friendly_name
self._entity_id = entity_id
self._attribute = attribute
self._device_class = device_class
self._invert = invert
self._sample_duration = sample_duration
self._min_gradient = min_gradient
self._gradient = None
self._state = None
self.samples = deque(maxlen=max_samples)
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def is_on(self):
"""Return true if sensor is on."""
return self._state
@property
def device_class(self):
"""Return the sensor class of the sensor."""
return self._device_class
@property
def device_state_attributes(self):
"""Return the state attributes of the sensor."""
return {
ATTR_ENTITY_ID: self._entity_id,
ATTR_FRIENDLY_NAME: self._name,
ATTR_GRADIENT: self._gradient,
ATTR_INVERT: self._invert,
ATTR_MIN_GRADIENT: self._min_gradient,
ATTR_SAMPLE_COUNT: len(self.samples),
ATTR_SAMPLE_DURATION: self._sample_duration,
}
@property
def should_poll(self):
"""No polling needed."""
return False
async def async_added_to_hass(self):
"""Complete device setup after being added to hass."""
@callback
def trend_sensor_state_listener(entity, old_state, new_state):
"""Handle state changes on the observed device."""
try:
if self._attribute:
state = new_state.attributes.get(self._attribute)
else:
state = new_state.state
if state != STATE_UNKNOWN:
sample = (utcnow().timestamp(), float(state))
self.samples.append(sample)
self.async_schedule_update_ha_state(True)
except (ValueError, TypeError) as ex:
_LOGGER.error(ex)
async_track_state_change(
self.hass, self._entity_id,
trend_sensor_state_listener)
async def async_update(self):
"""Get the latest data and update the states."""
# Remove outdated samples
if self._sample_duration > 0:
cutoff = utcnow().timestamp() - self._sample_duration
while self.samples and self.samples[0][0] < cutoff:
self.samples.popleft()
if len(self.samples) < 2:
return
# Calculate gradient of linear trend
await self.hass.async_add_job(self._calculate_gradient)
# Update state
self._state = (
abs(self._gradient) > abs(self._min_gradient) and
math.copysign(self._gradient, self._min_gradient) == self._gradient
)
if self._invert:
self._state = not self._state
def _calculate_gradient(self):
"""Compute the linear trend gradient of the current samples.
This need run inside executor.
"""
import numpy as np
timestamps = np.array([t for t, _ in self.samples])
values = np.array([s for _, s in self.samples])
coeffs = np.polyfit(timestamps, values, 1)
self._gradient = coeffs[0]