"""A sensor that monitors trends in other components.""" from collections import deque import logging import math import voluptuous as vol from homeassistant.components.binary_sensor import ( DEVICE_CLASSES_SCHEMA, ENTITY_ID_FORMAT, PLATFORM_SCHEMA, BinarySensorDevice) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_FRIENDLY_NAME, CONF_DEVICE_CLASS, CONF_ENTITY_ID, CONF_FRIENDLY_NAME, STATE_UNKNOWN, CONF_SENSORS) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import generate_entity_id from homeassistant.helpers.event import async_track_state_change from homeassistant.util import utcnow REQUIREMENTS = ['numpy==1.16.2'] _LOGGER = logging.getLogger(__name__) ATTR_ATTRIBUTE = 'attribute' ATTR_GRADIENT = 'gradient' ATTR_MIN_GRADIENT = 'min_gradient' ATTR_INVERT = 'invert' ATTR_SAMPLE_DURATION = 'sample_duration' ATTR_SAMPLE_COUNT = 'sample_count' CONF_ATTRIBUTE = 'attribute' CONF_INVERT = 'invert' CONF_MAX_SAMPLES = 'max_samples' CONF_MIN_GRADIENT = 'min_gradient' CONF_SAMPLE_DURATION = 'sample_duration' SENSOR_SCHEMA = vol.Schema({ vol.Required(CONF_ENTITY_ID): cv.entity_id, vol.Optional(CONF_ATTRIBUTE): cv.string, vol.Optional(CONF_DEVICE_CLASS): DEVICE_CLASSES_SCHEMA, vol.Optional(CONF_FRIENDLY_NAME): cv.string, vol.Optional(CONF_INVERT, default=False): cv.boolean, vol.Optional(CONF_MAX_SAMPLES, default=2): cv.positive_int, vol.Optional(CONF_MIN_GRADIENT, default=0.0): vol.Coerce(float), vol.Optional(CONF_SAMPLE_DURATION, default=0): cv.positive_int, }) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_SENSORS): cv.schema_with_slug_keys(SENSOR_SCHEMA), }) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the trend sensors.""" sensors = [] for device_id, device_config in config[CONF_SENSORS].items(): entity_id = device_config[ATTR_ENTITY_ID] attribute = device_config.get(CONF_ATTRIBUTE) device_class = device_config.get(CONF_DEVICE_CLASS) friendly_name = device_config.get(ATTR_FRIENDLY_NAME, device_id) invert = device_config[CONF_INVERT] max_samples = device_config[CONF_MAX_SAMPLES] min_gradient = device_config[CONF_MIN_GRADIENT] sample_duration = device_config[CONF_SAMPLE_DURATION] sensors.append( SensorTrend( hass, device_id, friendly_name, entity_id, attribute, device_class, invert, max_samples, min_gradient, sample_duration) ) if not sensors: _LOGGER.error("No sensors added") return add_entities(sensors) class SensorTrend(BinarySensorDevice): """Representation of a trend Sensor.""" def __init__(self, hass, device_id, friendly_name, entity_id, attribute, device_class, invert, max_samples, min_gradient, sample_duration): """Initialize the sensor.""" self._hass = hass self.entity_id = generate_entity_id( ENTITY_ID_FORMAT, device_id, hass=hass) self._name = friendly_name self._entity_id = entity_id self._attribute = attribute self._device_class = device_class self._invert = invert self._sample_duration = sample_duration self._min_gradient = min_gradient self._gradient = None self._state = None self.samples = deque(maxlen=max_samples) @property def name(self): """Return the name of the sensor.""" return self._name @property def is_on(self): """Return true if sensor is on.""" return self._state @property def device_class(self): """Return the sensor class of the sensor.""" return self._device_class @property def device_state_attributes(self): """Return the state attributes of the sensor.""" return { ATTR_ENTITY_ID: self._entity_id, ATTR_FRIENDLY_NAME: self._name, ATTR_GRADIENT: self._gradient, ATTR_INVERT: self._invert, ATTR_MIN_GRADIENT: self._min_gradient, ATTR_SAMPLE_COUNT: len(self.samples), ATTR_SAMPLE_DURATION: self._sample_duration, } @property def should_poll(self): """No polling needed.""" return False async def async_added_to_hass(self): """Complete device setup after being added to hass.""" @callback def trend_sensor_state_listener(entity, old_state, new_state): """Handle state changes on the observed device.""" try: if self._attribute: state = new_state.attributes.get(self._attribute) else: state = new_state.state if state != STATE_UNKNOWN: sample = (utcnow().timestamp(), float(state)) self.samples.append(sample) self.async_schedule_update_ha_state(True) except (ValueError, TypeError) as ex: _LOGGER.error(ex) async_track_state_change( self.hass, self._entity_id, trend_sensor_state_listener) async def async_update(self): """Get the latest data and update the states.""" # Remove outdated samples if self._sample_duration > 0: cutoff = utcnow().timestamp() - self._sample_duration while self.samples and self.samples[0][0] < cutoff: self.samples.popleft() if len(self.samples) < 2: return # Calculate gradient of linear trend await self.hass.async_add_job(self._calculate_gradient) # Update state self._state = ( abs(self._gradient) > abs(self._min_gradient) and math.copysign(self._gradient, self._min_gradient) == self._gradient ) if self._invert: self._state = not self._state def _calculate_gradient(self): """Compute the linear trend gradient of the current samples. This need run inside executor. """ import numpy as np timestamps = np.array([t for t, _ in self.samples]) values = np.array([s for _, s in self.samples]) coeffs = np.polyfit(timestamps, values, 1) self._gradient = coeffs[0]