239 lines
8.3 KiB
Python
239 lines
8.3 KiB
Python
|
"""
|
||
|
Use Bayesian Inference to trigger a binary sensor.
|
||
|
|
||
|
For more details about this platform, please refer to the documentation at
|
||
|
https://home-assistant.io/components/binary_sensor.bayesian/
|
||
|
"""
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
import voluptuous as vol
|
||
|
|
||
|
from homeassistant.components.binary_sensor import (
|
||
|
PLATFORM_SCHEMA, BinarySensorDevice)
|
||
|
from homeassistant.const import (
|
||
|
CONF_ABOVE, CONF_BELOW, CONF_DEVICE_CLASS, CONF_ENTITY_ID, CONF_NAME,
|
||
|
CONF_PLATFORM, CONF_STATE, CONF_VALUE_TEMPLATE, STATE_UNKNOWN)
|
||
|
from homeassistant.core import callback
|
||
|
from homeassistant.helpers import condition
|
||
|
import homeassistant.helpers.config_validation as cv
|
||
|
from homeassistant.helpers.event import async_track_state_change
|
||
|
|
||
|
ATTR_OBSERVATIONS = 'observations'
|
||
|
ATTR_PROBABILITY = 'probability'
|
||
|
ATTR_PROBABILITY_THRESHOLD = 'probability_threshold'
|
||
|
|
||
|
CONF_OBSERVATIONS = 'observations'
|
||
|
CONF_PRIOR = 'prior'
|
||
|
CONF_TEMPLATE = "template"
|
||
|
CONF_PROBABILITY_THRESHOLD = 'probability_threshold'
|
||
|
CONF_P_GIVEN_F = 'prob_given_false'
|
||
|
CONF_P_GIVEN_T = 'prob_given_true'
|
||
|
CONF_TO_STATE = 'to_state'
|
||
|
|
||
|
DEFAULT_NAME = "Bayesian Binary Sensor"
|
||
|
DEFAULT_PROBABILITY_THRESHOLD = 0.5
|
||
|
|
||
|
NUMERIC_STATE_SCHEMA = vol.Schema({
|
||
|
CONF_PLATFORM: 'numeric_state',
|
||
|
vol.Required(CONF_ENTITY_ID): cv.entity_id,
|
||
|
vol.Optional(CONF_ABOVE): vol.Coerce(float),
|
||
|
vol.Optional(CONF_BELOW): vol.Coerce(float),
|
||
|
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
|
||
|
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float)
|
||
|
}, required=True)
|
||
|
|
||
|
STATE_SCHEMA = vol.Schema({
|
||
|
CONF_PLATFORM: CONF_STATE,
|
||
|
vol.Required(CONF_ENTITY_ID): cv.entity_id,
|
||
|
vol.Required(CONF_TO_STATE): cv.string,
|
||
|
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
|
||
|
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float)
|
||
|
}, required=True)
|
||
|
|
||
|
TEMPLATE_SCHEMA = vol.Schema({
|
||
|
CONF_PLATFORM: CONF_TEMPLATE,
|
||
|
vol.Required(CONF_VALUE_TEMPLATE): cv.template,
|
||
|
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
|
||
|
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float)
|
||
|
}, required=True)
|
||
|
|
||
|
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
|
||
|
vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string,
|
||
|
vol.Optional(CONF_DEVICE_CLASS): cv.string,
|
||
|
vol.Required(CONF_OBSERVATIONS):
|
||
|
vol.Schema(vol.All(cv.ensure_list,
|
||
|
[vol.Any(NUMERIC_STATE_SCHEMA, STATE_SCHEMA,
|
||
|
TEMPLATE_SCHEMA)])),
|
||
|
vol.Required(CONF_PRIOR): vol.Coerce(float),
|
||
|
vol.Optional(CONF_PROBABILITY_THRESHOLD,
|
||
|
default=DEFAULT_PROBABILITY_THRESHOLD): vol.Coerce(float),
|
||
|
})
|
||
|
|
||
|
|
||
|
def update_probability(prior, prob_true, prob_false):
|
||
|
"""Update probability using Bayes' rule."""
|
||
|
numerator = prob_true * prior
|
||
|
denominator = numerator + prob_false * (1 - prior)
|
||
|
probability = numerator / denominator
|
||
|
return probability
|
||
|
|
||
|
|
||
|
async def async_setup_platform(hass, config, async_add_entities,
|
||
|
discovery_info=None):
|
||
|
"""Set up the Bayesian Binary sensor."""
|
||
|
name = config.get(CONF_NAME)
|
||
|
observations = config.get(CONF_OBSERVATIONS)
|
||
|
prior = config.get(CONF_PRIOR)
|
||
|
probability_threshold = config.get(CONF_PROBABILITY_THRESHOLD)
|
||
|
device_class = config.get(CONF_DEVICE_CLASS)
|
||
|
|
||
|
async_add_entities([
|
||
|
BayesianBinarySensor(
|
||
|
name, prior, observations, probability_threshold, device_class)
|
||
|
], True)
|
||
|
|
||
|
|
||
|
class BayesianBinarySensor(BinarySensorDevice):
|
||
|
"""Representation of a Bayesian sensor."""
|
||
|
|
||
|
def __init__(self, name, prior, observations, probability_threshold,
|
||
|
device_class):
|
||
|
"""Initialize the Bayesian sensor."""
|
||
|
self._name = name
|
||
|
self._observations = observations
|
||
|
self._probability_threshold = probability_threshold
|
||
|
self._device_class = device_class
|
||
|
self._deviation = False
|
||
|
self.prior = prior
|
||
|
self.probability = prior
|
||
|
|
||
|
self.current_obs = OrderedDict({})
|
||
|
|
||
|
to_observe = set()
|
||
|
for obs in self._observations:
|
||
|
if 'entity_id' in obs:
|
||
|
to_observe.update(set([obs.get('entity_id')]))
|
||
|
if 'value_template' in obs:
|
||
|
to_observe.update(
|
||
|
set(obs.get(CONF_VALUE_TEMPLATE).extract_entities()))
|
||
|
self.entity_obs = dict.fromkeys(to_observe, [])
|
||
|
|
||
|
for ind, obs in enumerate(self._observations):
|
||
|
obs['id'] = ind
|
||
|
if 'entity_id' in obs:
|
||
|
self.entity_obs[obs['entity_id']].append(obs)
|
||
|
if 'value_template' in obs:
|
||
|
for ent in obs.get(CONF_VALUE_TEMPLATE).extract_entities():
|
||
|
self.entity_obs[ent].append(obs)
|
||
|
|
||
|
self.watchers = {
|
||
|
'numeric_state': self._process_numeric_state,
|
||
|
'state': self._process_state,
|
||
|
'template': self._process_template
|
||
|
}
|
||
|
|
||
|
async def async_added_to_hass(self):
|
||
|
"""Call when entity about to be added."""
|
||
|
@callback
|
||
|
def async_threshold_sensor_state_listener(entity, old_state,
|
||
|
new_state):
|
||
|
"""Handle sensor state changes."""
|
||
|
if new_state.state == STATE_UNKNOWN:
|
||
|
return
|
||
|
|
||
|
entity_obs_list = self.entity_obs[entity]
|
||
|
|
||
|
for entity_obs in entity_obs_list:
|
||
|
platform = entity_obs['platform']
|
||
|
|
||
|
self.watchers[platform](entity_obs)
|
||
|
|
||
|
prior = self.prior
|
||
|
for obs in self.current_obs.values():
|
||
|
prior = update_probability(
|
||
|
prior, obs['prob_true'], obs['prob_false'])
|
||
|
self.probability = prior
|
||
|
|
||
|
self.hass.async_add_job(self.async_update_ha_state, True)
|
||
|
|
||
|
async_track_state_change(
|
||
|
self.hass, self.entity_obs, async_threshold_sensor_state_listener)
|
||
|
|
||
|
def _update_current_obs(self, entity_observation, should_trigger):
|
||
|
"""Update current observation."""
|
||
|
obs_id = entity_observation['id']
|
||
|
|
||
|
if should_trigger:
|
||
|
prob_true = entity_observation['prob_given_true']
|
||
|
prob_false = entity_observation.get(
|
||
|
'prob_given_false', 1 - prob_true)
|
||
|
|
||
|
self.current_obs[obs_id] = {
|
||
|
'prob_true': prob_true,
|
||
|
'prob_false': prob_false
|
||
|
}
|
||
|
|
||
|
else:
|
||
|
self.current_obs.pop(obs_id, None)
|
||
|
|
||
|
def _process_numeric_state(self, entity_observation):
|
||
|
"""Add entity to current_obs if numeric state conditions are met."""
|
||
|
entity = entity_observation['entity_id']
|
||
|
|
||
|
should_trigger = condition.async_numeric_state(
|
||
|
self.hass, entity,
|
||
|
entity_observation.get('below'),
|
||
|
entity_observation.get('above'), None, entity_observation)
|
||
|
|
||
|
self._update_current_obs(entity_observation, should_trigger)
|
||
|
|
||
|
def _process_state(self, entity_observation):
|
||
|
"""Add entity to current observations if state conditions are met."""
|
||
|
entity = entity_observation['entity_id']
|
||
|
|
||
|
should_trigger = condition.state(
|
||
|
self.hass, entity, entity_observation.get('to_state'))
|
||
|
|
||
|
self._update_current_obs(entity_observation, should_trigger)
|
||
|
|
||
|
def _process_template(self, entity_observation):
|
||
|
"""Add entity to current_obs if template is true."""
|
||
|
template = entity_observation.get(CONF_VALUE_TEMPLATE)
|
||
|
template.hass = self.hass
|
||
|
should_trigger = condition.async_template(
|
||
|
self.hass, template, entity_observation)
|
||
|
self._update_current_obs(entity_observation, should_trigger)
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
"""Return the name of the sensor."""
|
||
|
return self._name
|
||
|
|
||
|
@property
|
||
|
def is_on(self):
|
||
|
"""Return true if sensor is on."""
|
||
|
return self._deviation
|
||
|
|
||
|
@property
|
||
|
def should_poll(self):
|
||
|
"""No polling needed."""
|
||
|
return False
|
||
|
|
||
|
@property
|
||
|
def device_class(self):
|
||
|
"""Return the sensor class of the sensor."""
|
||
|
return self._device_class
|
||
|
|
||
|
@property
|
||
|
def device_state_attributes(self):
|
||
|
"""Return the state attributes of the sensor."""
|
||
|
return {
|
||
|
ATTR_OBSERVATIONS: [val for val in self.current_obs.values()],
|
||
|
ATTR_PROBABILITY: round(self.probability, 2),
|
||
|
ATTR_PROBABILITY_THRESHOLD: self._probability_threshold,
|
||
|
}
|
||
|
|
||
|
async def async_update(self):
|
||
|
"""Get the latest data and update the states."""
|
||
|
self._deviation = bool(self.probability >= self._probability_threshold)
|