Bayesian Binary Sensor (#8810)

* Bayesian Binary Sensor

Why:

* It would be beneficial to leverage various sensor outputs in a
Bayesian manner in order to sense more complex events.

This change addresses the need by:

* `BayesianBinarySensor` class in
`./homeassistant/components/binary_sensor/bayesian.py`
* Tests in `./tests/components/binary_sensor/test_bayesian.py`

Caveats:
This is my first time in this code-base. I did try to follow conventions
that I was able to find, but I'm sure there will be some issues to
straighten out.

* minor cleanup

* Address reviewer's comments

This change addresses the need by:

* Removing `CONF_SENSOR_CLASS` and its usage in `get_deprecated`.
* Make probability update function a static method, and use single `_`
to match project conventions.

* Address linter failures

* fix `device_class` declaration

* Address Comments

Why:
* Not validating config schema enough.
* Not following common practices for async initialization.
* Naive implementation of Bayes' rule.

This change addresses the need by:
* Improving config validation for observations.
* Moving initialization logic into `async_added_to_hass`.
* Re-configuring Bayesian updates to allow true P|Q usage.

* address linting issues

* Improve DRYness by adding `_update_current_obs` method

* update doc strings and ensure functions are set up properly for async

* Make only 1 state change handle

* fix style

* fix style part 2

* fix lint
pull/9183/head
Jeff McGehee 2017-08-29 17:53:41 -04:00 committed by Pascal Vizeli
parent 0b58d5405e
commit 7de73e9ef7
2 changed files with 387 additions and 0 deletions

View File

@ -0,0 +1,211 @@
"""
Use Bayesian Inference to trigger a binary sensor.
For more details about this platform, please refer to the documentation at
https://home-assistant.io/components/binary_sensor.bayesian/
"""
import asyncio
import logging
from collections import OrderedDict
import voluptuous as vol
import homeassistant.helpers.config_validation as cv
from homeassistant.components.binary_sensor import (
BinarySensorDevice, PLATFORM_SCHEMA)
from homeassistant.const import (
CONF_ABOVE, CONF_BELOW, CONF_DEVICE_CLASS, CONF_ENTITY_ID, CONF_NAME,
CONF_PLATFORM, CONF_STATE, STATE_UNKNOWN)
from homeassistant.core import callback
from homeassistant.helpers import condition
from homeassistant.helpers.event import async_track_state_change
_LOGGER = logging.getLogger(__name__)
CONF_OBSERVATIONS = 'observations'
CONF_PRIOR = 'prior'
CONF_PROBABILITY_THRESHOLD = 'probability_threshold'
CONF_P_GIVEN_F = 'prob_given_false'
CONF_P_GIVEN_T = 'prob_given_true'
CONF_TO_STATE = 'to_state'
DEFAULT_NAME = 'BayesianBinary'
NUMERIC_STATE_SCHEMA = vol.Schema({
CONF_PLATFORM: 'numeric_state',
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Optional(CONF_ABOVE): vol.Coerce(float),
vol.Optional(CONF_BELOW): vol.Coerce(float),
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float)
}, required=True)
STATE_SCHEMA = vol.Schema({
CONF_PLATFORM: CONF_STATE,
vol.Required(CONF_ENTITY_ID): cv.entity_id,
vol.Required(CONF_TO_STATE): cv.string,
vol.Required(CONF_P_GIVEN_T): vol.Coerce(float),
vol.Optional(CONF_P_GIVEN_F): vol.Coerce(float)
}, required=True)
PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({
vol.Optional(CONF_NAME, default=DEFAULT_NAME):
cv.string,
vol.Optional(CONF_DEVICE_CLASS): cv.string,
vol.Required(CONF_OBSERVATIONS): vol.Schema(
vol.All(cv.ensure_list, [vol.Any(NUMERIC_STATE_SCHEMA,
STATE_SCHEMA)])
),
vol.Required(CONF_PRIOR): vol.Coerce(float),
vol.Optional(CONF_PROBABILITY_THRESHOLD):
vol.Coerce(float),
})
def update_probability(prior, prob_true, prob_false):
"""Update probability using Bayes' rule."""
numerator = prob_true * prior
denominator = numerator + prob_false * (1 - prior)
probability = numerator / denominator
return probability
@asyncio.coroutine
def async_setup_platform(hass, config, async_add_devices, discovery_info=None):
"""Set up the Threshold sensor."""
name = config.get(CONF_NAME)
observations = config.get(CONF_OBSERVATIONS)
prior = config.get(CONF_PRIOR)
probability_threshold = config.get(CONF_PROBABILITY_THRESHOLD, 0.5)
device_class = config.get(CONF_DEVICE_CLASS)
async_add_devices([
BayesianBinarySensor(name, prior, observations, probability_threshold,
device_class)
], True)
class BayesianBinarySensor(BinarySensorDevice):
"""Representation of a Bayesian sensor."""
def __init__(self, name, prior, observations, probability_threshold,
device_class):
"""Initialize the Bayesian sensor."""
self._name = name
self._observations = observations
self._probability_threshold = probability_threshold
self._device_class = device_class
self._deviation = False
self.prior = prior
self.probability = prior
self.current_obs = OrderedDict({})
self.entity_obs = {obs['entity_id']: obs for obs in self._observations}
self.watchers = {
'numeric_state': self._process_numeric_state,
'state': self._process_state
}
@asyncio.coroutine
def async_added_to_hass(self):
"""Call when entity about to be added to hass."""
@callback
# pylint: disable=invalid-name
def async_threshold_sensor_state_listener(entity, old_state,
new_state):
"""Handle sensor state changes."""
if new_state.state == STATE_UNKNOWN:
return
entity_obs = self.entity_obs[entity]
platform = entity_obs['platform']
self.watchers[platform](entity_obs)
prior = self.prior
print(self.current_obs.values())
for obs in self.current_obs.values():
prior = update_probability(prior, obs['prob_true'],
obs['prob_false'])
self.probability = prior
self.hass.async_add_job(self.async_update_ha_state, True)
entities = [obs['entity_id'] for obs in self._observations]
async_track_state_change(
self.hass, entities, async_threshold_sensor_state_listener)
def _update_current_obs(self, entity_observation, should_trigger):
"""Update current observation."""
entity = entity_observation['entity_id']
if should_trigger:
prob_true = entity_observation['prob_given_true']
prob_false = entity_observation.get(
'prob_given_false', 1 - prob_true)
self.current_obs[entity] = {
'prob_true': prob_true,
'prob_false': prob_false
}
else:
self.current_obs.pop(entity, None)
def _process_numeric_state(self, entity_observation):
"""Add entity to current_obs if numeric state conditions are met."""
entity = entity_observation['entity_id']
should_trigger = condition.async_numeric_state(
self.hass, entity,
entity_observation.get('below'),
entity_observation.get('above'), None, entity_observation)
self._update_current_obs(entity_observation, should_trigger)
def _process_state(self, entity_observation):
"""Add entity to current observations if state conditions are met."""
entity = entity_observation['entity_id']
should_trigger = condition.state(
self.hass, entity, entity_observation.get('to_state'))
self._update_current_obs(entity_observation, should_trigger)
@property
def name(self):
"""Return the name of the sensor."""
return self._name
@property
def is_on(self):
"""Return true if sensor is on."""
return self._deviation
@property
def should_poll(self):
"""No polling needed."""
return False
@property
def device_class(self):
"""Return the sensor class of the sensor."""
return self._device_class
@property
def device_state_attributes(self):
"""Return the state attributes of the sensor."""
return {
'observations': [val for val in self.current_obs.values()],
'probability': self.probability,
'probability_threshold': self._probability_threshold
}
@asyncio.coroutine
def async_update(self):
"""Get the latest data and update the states."""
self._deviation = bool(self.probability > self._probability_threshold)

View File

@ -0,0 +1,176 @@
"""The test for the bayesian sensor platform."""
import unittest
from homeassistant.setup import setup_component
from homeassistant.components.binary_sensor import bayesian
from tests.common import get_test_home_assistant
class TestBayesianBinarySensor(unittest.TestCase):
"""Test the threshold sensor."""
def setup_method(self, method):
"""Set up things to be run when tests are started."""
self.hass = get_test_home_assistant()
def teardown_method(self, method):
"""Stop everything that was started."""
self.hass.stop()
def test_sensor_numeric_state(self):
"""Test sensor on numeric state platform observations."""
config = {
'binary_sensor': {
'platform':
'bayesian',
'name':
'Test_Binary',
'observations': [{
'platform': 'numeric_state',
'entity_id': 'sensor.test_monitored',
'below': 10,
'above': 5,
'prob_given_true': 0.6
}, {
'platform': 'numeric_state',
'entity_id': 'sensor.test_monitored1',
'below': 7,
'above': 5,
'prob_given_true': 0.9,
'prob_given_false': 0.1
}],
'prior':
0.2,
}
}
assert setup_component(self.hass, 'binary_sensor', config)
self.hass.states.set('sensor.test_monitored', 4)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_binary')
self.assertEqual([], state.attributes.get('observations'))
self.assertEqual(0.2, state.attributes.get('probability'))
assert state.state == 'off'
self.hass.states.set('sensor.test_monitored', 6)
self.hass.block_till_done()
self.hass.states.set('sensor.test_monitored', 4)
self.hass.block_till_done()
self.hass.states.set('sensor.test_monitored', 6)
self.hass.states.set('sensor.test_monitored1', 6)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_binary')
self.assertEqual([{
'prob_false': 0.4,
'prob_true': 0.6
}, {
'prob_false': 0.1,
'prob_true': 0.9
}], state.attributes.get('observations'))
self.assertAlmostEqual(0.7714285714285715,
state.attributes.get('probability'))
assert state.state == 'on'
self.hass.states.set('sensor.test_monitored', 6)
self.hass.states.set('sensor.test_monitored1', 0)
self.hass.block_till_done()
self.hass.states.set('sensor.test_monitored', 4)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_binary')
self.assertEqual(0.2, state.attributes.get('probability'))
assert state.state == 'off'
self.hass.states.set('sensor.test_monitored', 15)
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_binary')
assert state.state == 'off'
def test_sensor_state(self):
"""Test sensor on state platform observations."""
config = {
'binary_sensor': {
'name':
'Test_Binary',
'platform':
'bayesian',
'observations': [{
'platform': 'state',
'entity_id': 'sensor.test_monitored',
'to_state': 'off',
'prob_given_true': 0.8,
'prob_given_false': 0.4
}],
'prior':
0.2,
'probability_threshold':
0.32,
}
}
assert setup_component(self.hass, 'binary_sensor', config)
self.hass.states.set('sensor.test_monitored', 'on')
state = self.hass.states.get('binary_sensor.test_binary')
self.assertEqual([], state.attributes.get('observations'))
self.assertEqual(0.2, state.attributes.get('probability'))
assert state.state == 'off'
self.hass.states.set('sensor.test_monitored', 'off')
self.hass.block_till_done()
self.hass.states.set('sensor.test_monitored', 'on')
self.hass.block_till_done()
self.hass.states.set('sensor.test_monitored', 'off')
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_binary')
self.assertEqual([{
'prob_true': 0.8,
'prob_false': 0.4
}], state.attributes.get('observations'))
self.assertAlmostEqual(0.33333333, state.attributes.get('probability'))
assert state.state == 'on'
self.hass.states.set('sensor.test_monitored', 'off')
self.hass.block_till_done()
self.hass.states.set('sensor.test_monitored', 'on')
self.hass.block_till_done()
state = self.hass.states.get('binary_sensor.test_binary')
self.assertAlmostEqual(0.2, state.attributes.get('probability'))
assert state.state == 'off'
def test_probability_updates(self):
"""Test probability update function."""
prob_true = [0.3, 0.6, 0.8]
prob_false = [0.7, 0.4, 0.2]
prior = 0.5
for pt, pf in zip(prob_true, prob_false):
prior = bayesian.update_probability(prior, pt, pf)
self.assertAlmostEqual(0.720000, prior)
prob_true = [0.8, 0.3, 0.9]
prob_false = [0.6, 0.4, 0.2]
prior = 0.7
for pt, pf in zip(prob_true, prob_false):
prior = bayesian.update_probability(prior, pt, pf)
self.assertAlmostEqual(0.9130434782608695, prior)