mbed-os/features/cellular/easy_cellular/CellularConnectionFSM.cpp

730 lines
22 KiB
C++

/*
* Copyright (c) 2017, Arm Limited and affiliates.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CellularConnectionFSM.h"
#ifdef CELLULAR_DEVICE
#ifndef MBED_TRACE_MAX_LEVEL
#define MBED_TRACE_MAX_LEVEL TRACE_LEVEL_INFO
#endif
#include "CellularLog.h"
#include "CellularCommon.h"
#include "CellularDevice.h"
#include "CellularUtil.h"
// timeout to wait for AT responses
#define TIMEOUT_POWER_ON (1*1000)
#define TIMEOUT_SIM_PIN (1*1000)
#define TIMEOUT_NETWORK (10*1000)
#define TIMEOUT_CONNECT (60*1000)
#define TIMEOUT_REGISTRATION (180*1000)
// maximum time when retrying network register, attach and connect in seconds ( 20minutes )
#define TIMEOUT_NETWORK_MAX (20*60)
#define RETRY_COUNT_DEFAULT 3
namespace mbed {
CellularConnectionFSM::CellularConnectionFSM() :
_serial(0), _state(STATE_INIT), _next_state(_state), _status_callback(0), _event_status_cb(0), _network(0), _power(0), _sim(0),
_queue(8 * EVENTS_EVENT_SIZE), _queue_thread(0), _cellularDevice(0), _retry_count(0), _event_timeout(-1),
_at_queue(0), _event_id(0), _plmn(0), _command_success(false), _plmn_network_found(false)
{
memset(_sim_pin, 0, sizeof(_sim_pin));
#if MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY == 0
_start_time = 0;
#else
// so that not every device don't start at the exact same time (for example after power outage)
_start_time = rand() % (MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY);
#endif // MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY
// set initial retry values in seconds
_retry_timeout_array[0] = 1; // double time on each retry in order to keep network happy
_retry_timeout_array[1] = 2;
_retry_timeout_array[2] = 4;
_retry_timeout_array[3] = 8;
_retry_timeout_array[4] = 16;
_retry_timeout_array[5] = 32;
_retry_timeout_array[6] = 64;
_retry_timeout_array[7] = 128; // if around two minutes was not enough then let's wait much longer
_retry_timeout_array[8] = 600;
_retry_timeout_array[9] = TIMEOUT_NETWORK_MAX;
_retry_array_length = MAX_RETRY_ARRAY_SIZE;
}
CellularConnectionFSM::~CellularConnectionFSM()
{
stop();
}
void CellularConnectionFSM::stop()
{
_queue.cancel(_event_id);
_queue.break_dispatch();
if (_queue_thread) {
_queue_thread->terminate();
delete _queue_thread;
_queue_thread = NULL;
}
if (_power) {
_cellularDevice->close_power();
_power = NULL;
}
if (_network) {
_cellularDevice->close_network();
_network = NULL;
}
if (_sim) {
_cellularDevice->close_sim();
_sim = NULL;
}
_state = STATE_INIT;
_next_state = _state;
}
nsapi_error_t CellularConnectionFSM::init()
{
tr_info("CELLULAR_DEVICE: %s", CELLULAR_STRINGIFY(CELLULAR_DEVICE));
_cellularDevice = CellularDevice::get_default_instance();
if (!_cellularDevice) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_power = _cellularDevice->open_power(_serial);
if (!_power) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_network = _cellularDevice->open_network(_serial);
if (!_network) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_sim = _cellularDevice->open_sim(_serial);
if (!_sim) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
_at_queue = _cellularDevice->get_queue();
_at_queue->chain(&_queue);
_retry_count = 0;
_state = STATE_INIT;
_next_state = STATE_INIT;
return _network->init();
}
bool CellularConnectionFSM::power_on()
{
nsapi_error_t err = _power->on();
if (err != NSAPI_ERROR_OK && err != NSAPI_ERROR_UNSUPPORTED) {
tr_warn("Cellular start failed. Power off/on.");
err = _power->off();
if (err != NSAPI_ERROR_OK && err != NSAPI_ERROR_UNSUPPORTED) {
tr_error("Cellular power down failing after failed power up attempt!");
}
return false;
}
return true;
}
void CellularConnectionFSM::set_sim_pin(const char *sim_pin)
{
strncpy(_sim_pin, sim_pin, sizeof(_sim_pin));
_sim_pin[sizeof(_sim_pin) - 1] = '\0';
}
void CellularConnectionFSM::set_plmn(const char *plmn)
{
_plmn = plmn;
}
bool CellularConnectionFSM::open_sim()
{
CellularSIM::SimState state = CellularSIM::SimStateUnknown;
// wait until SIM is readable
// here you could add wait(secs) if you know start delay of your SIM
if (_sim->get_sim_state(state) != NSAPI_ERROR_OK) {
tr_info("Waiting for SIM (err while reading)...");
if (_event_status_cb) {
_event_status_cb((nsapi_event_t)CellularSIMStatusChanged, state);
}
return false;
}
// report current state so callback can set sim pin if needed
if (_event_status_cb) {
_event_status_cb((nsapi_event_t)CellularSIMStatusChanged, state);
}
if (state == CellularSIM::SimStatePinNeeded) {
if (strlen(_sim_pin)) {
tr_info("SIM pin required, entering pin");
nsapi_error_t err = _sim->set_pin(_sim_pin);
if (err) {
tr_error("SIM pin set failed with: %d, bailing out...", err);
}
} else {
// No sim pin provided even it's needed, stop state machine
tr_error("PIN required but No SIM pin provided.");
_retry_count = MAX_RETRY_ARRAY_SIZE;
return false;
}
}
return state == CellularSIM::SimStateReady;
}
bool CellularConnectionFSM::is_registered()
{
CellularNetwork::RegistrationStatus status;
bool is_registered = false;
for (int type = 0; type < CellularNetwork::C_MAX; type++) {
if (get_network_registration((CellularNetwork::RegistrationType) type, status, is_registered)) {
tr_debug("get_network_registration: type=%d, status=%d", type, status);
if (is_registered) {
break;
}
}
}
return is_registered;
}
bool CellularConnectionFSM::get_network_registration(CellularNetwork::RegistrationType type,
CellularNetwork::RegistrationStatus &status, bool &is_registered)
{
is_registered = false;
bool is_roaming = false;
CellularNetwork::registration_params_t reg_params;
nsapi_error_t err = _network->get_registration_params(type, reg_params);
if (err != NSAPI_ERROR_OK) {
if (err != NSAPI_ERROR_UNSUPPORTED) {
tr_warn("Get network registration failed (type %d)!", type);
}
return false;
}
status = reg_params._status;
switch (status) {
case CellularNetwork::RegisteredRoaming:
is_roaming = true;
// fall-through
case CellularNetwork::RegisteredHomeNetwork:
is_registered = true;
break;
case CellularNetwork::RegisteredSMSOnlyRoaming:
is_roaming = true;
// fall-through
case CellularNetwork::RegisteredSMSOnlyHome:
tr_warn("SMS only network registration!");
break;
case CellularNetwork::RegisteredCSFBNotPreferredRoaming:
is_roaming = true;
// fall-through
case CellularNetwork::RegisteredCSFBNotPreferredHome:
tr_warn("Not preferred network registration!");
break;
case CellularNetwork::AttachedEmergencyOnly:
tr_warn("Emergency only network registration!");
break;
case CellularNetwork::RegistrationDenied:
case CellularNetwork::NotRegistered:
case CellularNetwork::Unknown:
case CellularNetwork::SearchingNetwork:
default:
break;
}
if (is_roaming) {
tr_warn("Roaming cellular network!");
}
return true;
}
void CellularConnectionFSM::report_failure(const char *msg)
{
tr_error("Cellular network failed: %s", msg);
if (_status_callback) {
_status_callback(_state, _next_state);
}
}
const char *CellularConnectionFSM::get_state_string(CellularState state)
{
#if MBED_CONF_MBED_TRACE_ENABLE
static const char *strings[] = { "Init", "Power", "Device ready", "SIM pin", "Registering network", "Manual registering", "Attaching network", "Activating PDP Context", "Connecting network", "Connected"};
return strings[state];
#else
return NULL;
#endif // #if MBED_CONF_MBED_TRACE_ENABLE
}
bool CellularConnectionFSM::is_registered_to_plmn()
{
int format;
CellularNetwork::operator_t op;
nsapi_error_t err = _network->get_operator_params(format, op);
if (err == NSAPI_ERROR_OK) {
if (format == 2) {
// great, numeric format we can do comparison for that
if (strcmp(op.op_num, _plmn) == 0) {
return true;
}
return false;
}
// format was alpha, get operator names to do the comparing
CellularNetwork::operator_names_list names_list;
nsapi_error_t err = _network->get_operator_names(names_list);
if (err == NSAPI_ERROR_OK) {
CellularNetwork::operator_names_t *op_names = names_list.get_head();
bool found_match = false;
while (op_names) {
if (format == 0) {
if (strcmp(op.op_long, op_names->alpha) == 0) {
found_match = true;
}
} else if (format == 1) {
if (strcmp(op.op_short, op_names->alpha) == 0) {
found_match = true;
}
}
if (found_match) {
if (strcmp(_plmn, op_names->numeric)) {
names_list.delete_all();
return true;
}
names_list.delete_all();
return false;
}
}
}
names_list.delete_all();
}
return false;
}
nsapi_error_t CellularConnectionFSM::continue_from_state(CellularState state)
{
tr_info("Continue state from %s to %s", get_state_string((CellularConnectionFSM::CellularState)_state),
get_state_string((CellularConnectionFSM::CellularState)state));
_state = state;
_next_state = state;
_retry_count = 0;
if (!_queue.call_in(0, callback(this, &CellularConnectionFSM::event))) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK;
}
nsapi_error_t CellularConnectionFSM::continue_to_state(CellularState state)
{
MBED_ASSERT(_cellularDevice);
_retry_count = 0;
if (state < _state) {
_state = state;
} else {
// update next state so that we don't continue from previous state
_state = _next_state;
}
if (!_queue.call_in(0, callback(this, &CellularConnectionFSM::event))) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK;
}
void CellularConnectionFSM::enter_to_state(CellularState state)
{
_next_state = state;
_retry_count = 0;
_command_success = false;
}
void CellularConnectionFSM::retry_state_or_fail()
{
if (++_retry_count < MAX_RETRY_ARRAY_SIZE) {
tr_debug("Retry State %s, retry %d/%d", get_state_string(_state), _retry_count, MAX_RETRY_ARRAY_SIZE);
_event_timeout = _retry_timeout_array[_retry_count];
} else {
report_failure(get_state_string(_state));
return;
}
}
void CellularConnectionFSM::state_init()
{
// we should check that if power is already on then we can jump to device ready state
_cellularDevice->set_timeout(TIMEOUT_POWER_ON);
tr_info("Cellular state init (timeout %d ms)", TIMEOUT_POWER_ON);
nsapi_error_t err = _power->is_device_ready();
if (err != NSAPI_ERROR_OK) {
_event_timeout = _start_time;
tr_info("Init state, waiting %d ms before POWER state)", _start_time);
enter_to_state(STATE_POWER_ON);
} else {
tr_info("Device was ready to accept commands, jump to device ready");
enter_to_state(STATE_DEVICE_READY);
}
}
void CellularConnectionFSM::state_power_on()
{
_cellularDevice->set_timeout(TIMEOUT_POWER_ON);
tr_info("Cellular power ON (timeout %d ms)", TIMEOUT_POWER_ON);
if (power_on()) {
enter_to_state(STATE_DEVICE_READY);
} else {
// retry to power on device
retry_state_or_fail();
}
}
bool CellularConnectionFSM::device_ready()
{
if (_cellularDevice->init_module(_serial) != NSAPI_ERROR_OK) {
return false;
}
tr_info("Cellular device ready");
if (_event_status_cb) {
_event_status_cb((nsapi_event_t)CellularDeviceReady, 0);
}
_power->remove_device_ready_urc_cb(mbed::callback(this, &CellularConnectionFSM::ready_urc_cb));
_cellularDevice->close_power();
_power = NULL;
return true;
}
void CellularConnectionFSM::state_device_ready()
{
_cellularDevice->set_timeout(TIMEOUT_POWER_ON);
if (_power->set_at_mode() == NSAPI_ERROR_OK) {
if (device_ready()) {
enter_to_state(STATE_SIM_PIN);
}
} else {
if (_retry_count == 0) {
(void)_power->set_device_ready_urc_cb(mbed::callback(this, &CellularConnectionFSM::ready_urc_cb));
}
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_sim_pin()
{
_cellularDevice->set_timeout(TIMEOUT_SIM_PIN);
tr_info("Sim state (timeout %d ms)", TIMEOUT_SIM_PIN);
if (open_sim()) {
bool success = false;
for (int type = 0; type < CellularNetwork::C_MAX; type++) {
if (!_network->set_registration_urc((CellularNetwork::RegistrationType)type, true)) {
success = true;
}
}
if (!success) {
tr_warn("Failed to set any URC's for registration");
retry_state_or_fail();
return;
}
if (_plmn) {
enter_to_state(STATE_MANUAL_REGISTERING_NETWORK);
} else {
enter_to_state(STATE_REGISTERING_NETWORK);
}
} else {
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_registering()
{
_cellularDevice->set_timeout(TIMEOUT_NETWORK);
if (is_registered()) {
// we are already registered, go to attach
enter_to_state(STATE_ATTACHING_NETWORK);
} else {
_cellularDevice->set_timeout(TIMEOUT_REGISTRATION);
if (!_command_success) {
_command_success = (_network->set_registration() == NSAPI_ERROR_OK);
}
retry_state_or_fail();
}
}
// only used when _plmn is set
void CellularConnectionFSM::state_manual_registering_network()
{
_cellularDevice->set_timeout(TIMEOUT_REGISTRATION);
tr_info("state_manual_registering_network");
if (!_plmn_network_found) {
if (is_registered() && is_registered_to_plmn()) {
_plmn_network_found = true;
enter_to_state(STATE_ATTACHING_NETWORK);
} else {
if (!_command_success) {
_command_success = (_network->set_registration(_plmn) == NSAPI_ERROR_OK);
}
retry_state_or_fail();
}
}
}
void CellularConnectionFSM::state_attaching()
{
_cellularDevice->set_timeout(TIMEOUT_CONNECT);
if (_network->set_attach() == NSAPI_ERROR_OK) {
_cellularDevice->close_sim();
_sim = NULL;
enter_to_state(STATE_ACTIVATING_PDP_CONTEXT);
} else {
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_activating_pdp_context()
{
_cellularDevice->set_timeout(TIMEOUT_CONNECT);
tr_info("Activate PDP Context (timeout %d ms)", TIMEOUT_CONNECT);
if (_network->activate_context() == NSAPI_ERROR_OK) {
// when using modems stack connect is synchronous
_next_state = STATE_CONNECTING_NETWORK;
} else {
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_connect_to_network()
{
_cellularDevice->set_timeout(TIMEOUT_CONNECT);
tr_info("Connect to cellular network (timeout %d ms)", TIMEOUT_CONNECT);
if (_network->connect() == NSAPI_ERROR_OK) {
_cellularDevice->set_timeout(TIMEOUT_NETWORK);
tr_debug("Connected to cellular network, set at timeout (timeout %d ms)", TIMEOUT_NETWORK);
// when using modems stack connect is synchronous
_next_state = STATE_CONNECTED;
} else {
retry_state_or_fail();
}
}
void CellularConnectionFSM::state_connected()
{
_cellularDevice->set_timeout(TIMEOUT_NETWORK);
tr_debug("Cellular ready! (timeout %d ms)", TIMEOUT_NETWORK);
if (_status_callback) {
_status_callback(_state, _next_state);
}
}
void CellularConnectionFSM::event()
{
_event_timeout = -1;
switch (_state) {
case STATE_INIT:
state_init();
break;
case STATE_POWER_ON:
state_power_on();
break;
case STATE_DEVICE_READY:
state_device_ready();
break;
case STATE_SIM_PIN:
state_sim_pin();
break;
case STATE_REGISTERING_NETWORK:
state_registering();
break;
case STATE_MANUAL_REGISTERING_NETWORK:
state_manual_registering_network();
break;
case STATE_ATTACHING_NETWORK:
state_attaching();
break;
case STATE_ACTIVATING_PDP_CONTEXT:
state_activating_pdp_context();
break;
case STATE_CONNECTING_NETWORK:
state_connect_to_network();
break;
case STATE_CONNECTED:
state_connected();
break;
default:
MBED_ASSERT(0);
break;
}
if (_next_state != _state || _event_timeout >= 0) {
if (_next_state != _state) { // state exit condition
tr_info("Cellular state from %s to %s", get_state_string((CellularConnectionFSM::CellularState)_state),
get_state_string((CellularConnectionFSM::CellularState)_next_state));
if (_status_callback) {
if (!_status_callback(_state, _next_state)) {
return;
}
}
} else {
tr_info("Cellular event in %d seconds", _event_timeout);
}
_state = _next_state;
if (_event_timeout == -1) {
_event_timeout = 0;
}
_event_id = _queue.call_in(_event_timeout * 1000, callback(this, &CellularConnectionFSM::event));
if (!_event_id) {
report_failure("Cellular event failure!");
return;
}
}
}
nsapi_error_t CellularConnectionFSM::start_dispatch()
{
MBED_ASSERT(!_queue_thread);
_queue_thread = new rtos::Thread(osPriorityNormal, 2048);
if (!_queue_thread) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
if (_queue_thread->start(callback(&_queue, &events::EventQueue::dispatch_forever)) != osOK) {
stop();
return NSAPI_ERROR_NO_MEMORY;
}
return NSAPI_ERROR_OK;
}
void CellularConnectionFSM::set_serial(UARTSerial *serial)
{
_serial = serial;
}
void CellularConnectionFSM::set_callback(mbed::Callback<bool(int, int)> status_callback)
{
_status_callback = status_callback;
}
void CellularConnectionFSM::attach(mbed::Callback<void(nsapi_event_t, intptr_t)> status_cb)
{
MBED_ASSERT(_network);
_event_status_cb = status_cb;
if (status_cb) {
_network->attach(callback(this, &CellularConnectionFSM::network_callback));
} else {
_network->attach(NULL);
}
}
void CellularConnectionFSM::network_callback(nsapi_event_t ev, intptr_t ptr)
{
tr_info("FSM: network_callback called with event: %d, intptr: %d, _state: %s", ev, ptr, get_state_string(_state));
if ((cellular_connection_status_t)ev == CellularRegistrationStatusChanged &&
(_state == STATE_REGISTERING_NETWORK || _state == STATE_MANUAL_REGISTERING_NETWORK)) {
// expect packet data so only these states are valid
if (ptr == CellularNetwork::RegisteredHomeNetwork || ptr == CellularNetwork::RegisteredRoaming) {
if (_plmn) {
if (is_registered_to_plmn()) {
if (!_plmn_network_found) {
_plmn_network_found = true;
_queue.cancel(_event_id);
continue_from_state(STATE_ATTACHING_NETWORK);
}
}
} else {
_queue.cancel(_event_id);
continue_from_state(STATE_ATTACHING_NETWORK);
}
}
}
if (_event_status_cb) {
_event_status_cb(ev, ptr);
}
}
void CellularConnectionFSM::ready_urc_cb()
{
tr_debug("Device ready URC func called");
if (_state == STATE_DEVICE_READY && _power->set_at_mode() == NSAPI_ERROR_OK) {
tr_debug("State was STATE_DEVICE_READY and at mode ready, cancel state and move to next");
if (device_ready()) {
_queue.cancel(_event_id);
continue_from_state(STATE_SIM_PIN);
}
}
}
events::EventQueue *CellularConnectionFSM::get_queue()
{
return &_queue;
}
CellularNetwork *CellularConnectionFSM::get_network()
{
return _network;
}
CellularDevice *CellularConnectionFSM::get_device()
{
return _cellularDevice;
}
CellularSIM *CellularConnectionFSM::get_sim()
{
return _sim;
}
NetworkStack *CellularConnectionFSM::get_stack()
{
return _cellularDevice->get_stack();
}
void CellularConnectionFSM::set_retry_timeout_array(uint16_t timeout[], int array_len)
{
_retry_array_length = array_len > MAX_RETRY_ARRAY_SIZE ? MAX_RETRY_ARRAY_SIZE : array_len;
for (int i = 0; i < _retry_array_length; i++) {
_retry_timeout_array[i] = timeout[i];
}
}
} // namespace
#endif // CELLULAR_DEVICE