/* * Copyright (c) 2017, Arm Limited and affiliates. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CellularConnectionFSM.h" #ifdef CELLULAR_DEVICE #ifndef MBED_TRACE_MAX_LEVEL #define MBED_TRACE_MAX_LEVEL TRACE_LEVEL_INFO #endif #include "CellularLog.h" #include "CellularCommon.h" #include "CellularDevice.h" #include "CellularUtil.h" // timeout to wait for AT responses #define TIMEOUT_POWER_ON (1*1000) #define TIMEOUT_SIM_PIN (1*1000) #define TIMEOUT_NETWORK (10*1000) #define TIMEOUT_CONNECT (60*1000) #define TIMEOUT_REGISTRATION (180*1000) // maximum time when retrying network register, attach and connect in seconds ( 20minutes ) #define TIMEOUT_NETWORK_MAX (20*60) #define RETRY_COUNT_DEFAULT 3 namespace mbed { CellularConnectionFSM::CellularConnectionFSM() : _serial(0), _state(STATE_INIT), _next_state(_state), _status_callback(0), _event_status_cb(0), _network(0), _power(0), _sim(0), _queue(8 * EVENTS_EVENT_SIZE), _queue_thread(0), _cellularDevice(0), _retry_count(0), _event_timeout(-1), _at_queue(0), _event_id(0), _plmn(0), _command_success(false), _plmn_network_found(false) { memset(_sim_pin, 0, sizeof(_sim_pin)); #if MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY == 0 _start_time = 0; #else // so that not every device don't start at the exact same time (for example after power outage) _start_time = rand() % (MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY); #endif // MBED_CONF_CELLULAR_RANDOM_MAX_START_DELAY // set initial retry values in seconds _retry_timeout_array[0] = 1; // double time on each retry in order to keep network happy _retry_timeout_array[1] = 2; _retry_timeout_array[2] = 4; _retry_timeout_array[3] = 8; _retry_timeout_array[4] = 16; _retry_timeout_array[5] = 32; _retry_timeout_array[6] = 64; _retry_timeout_array[7] = 128; // if around two minutes was not enough then let's wait much longer _retry_timeout_array[8] = 600; _retry_timeout_array[9] = TIMEOUT_NETWORK_MAX; _retry_array_length = MAX_RETRY_ARRAY_SIZE; } CellularConnectionFSM::~CellularConnectionFSM() { stop(); } void CellularConnectionFSM::stop() { _queue.cancel(_event_id); _queue.break_dispatch(); if (_queue_thread) { _queue_thread->terminate(); delete _queue_thread; _queue_thread = NULL; } if (_power) { _cellularDevice->close_power(); _power = NULL; } if (_network) { _cellularDevice->close_network(); _network = NULL; } if (_sim) { _cellularDevice->close_sim(); _sim = NULL; } _state = STATE_INIT; _next_state = _state; } nsapi_error_t CellularConnectionFSM::init() { tr_info("CELLULAR_DEVICE: %s", CELLULAR_STRINGIFY(CELLULAR_DEVICE)); _cellularDevice = CellularDevice::get_default_instance(); if (!_cellularDevice) { stop(); return NSAPI_ERROR_NO_MEMORY; } _power = _cellularDevice->open_power(_serial); if (!_power) { stop(); return NSAPI_ERROR_NO_MEMORY; } _network = _cellularDevice->open_network(_serial); if (!_network) { stop(); return NSAPI_ERROR_NO_MEMORY; } _sim = _cellularDevice->open_sim(_serial); if (!_sim) { stop(); return NSAPI_ERROR_NO_MEMORY; } _at_queue = _cellularDevice->get_queue(); _at_queue->chain(&_queue); _retry_count = 0; _state = STATE_INIT; _next_state = STATE_INIT; return _network->init(); } bool CellularConnectionFSM::power_on() { nsapi_error_t err = _power->on(); if (err != NSAPI_ERROR_OK && err != NSAPI_ERROR_UNSUPPORTED) { tr_warn("Cellular start failed. Power off/on."); err = _power->off(); if (err != NSAPI_ERROR_OK && err != NSAPI_ERROR_UNSUPPORTED) { tr_error("Cellular power down failing after failed power up attempt!"); } return false; } return true; } void CellularConnectionFSM::set_sim_pin(const char *sim_pin) { strncpy(_sim_pin, sim_pin, sizeof(_sim_pin)); _sim_pin[sizeof(_sim_pin) - 1] = '\0'; } void CellularConnectionFSM::set_plmn(const char *plmn) { _plmn = plmn; } bool CellularConnectionFSM::open_sim() { CellularSIM::SimState state = CellularSIM::SimStateUnknown; // wait until SIM is readable // here you could add wait(secs) if you know start delay of your SIM if (_sim->get_sim_state(state) != NSAPI_ERROR_OK) { tr_info("Waiting for SIM (err while reading)..."); if (_event_status_cb) { _event_status_cb((nsapi_event_t)CellularSIMStatusChanged, state); } return false; } // report current state so callback can set sim pin if needed if (_event_status_cb) { _event_status_cb((nsapi_event_t)CellularSIMStatusChanged, state); } if (state == CellularSIM::SimStatePinNeeded) { if (strlen(_sim_pin)) { tr_info("SIM pin required, entering pin"); nsapi_error_t err = _sim->set_pin(_sim_pin); if (err) { tr_error("SIM pin set failed with: %d, bailing out...", err); } } else { // No sim pin provided even it's needed, stop state machine tr_error("PIN required but No SIM pin provided."); _retry_count = MAX_RETRY_ARRAY_SIZE; return false; } } return state == CellularSIM::SimStateReady; } bool CellularConnectionFSM::is_registered() { CellularNetwork::RegistrationStatus status; bool is_registered = false; for (int type = 0; type < CellularNetwork::C_MAX; type++) { if (get_network_registration((CellularNetwork::RegistrationType) type, status, is_registered)) { tr_debug("get_network_registration: type=%d, status=%d", type, status); if (is_registered) { break; } } } return is_registered; } bool CellularConnectionFSM::get_network_registration(CellularNetwork::RegistrationType type, CellularNetwork::RegistrationStatus &status, bool &is_registered) { is_registered = false; bool is_roaming = false; CellularNetwork::registration_params_t reg_params; nsapi_error_t err = _network->get_registration_params(type, reg_params); if (err != NSAPI_ERROR_OK) { if (err != NSAPI_ERROR_UNSUPPORTED) { tr_warn("Get network registration failed (type %d)!", type); } return false; } status = reg_params._status; switch (status) { case CellularNetwork::RegisteredRoaming: is_roaming = true; // fall-through case CellularNetwork::RegisteredHomeNetwork: is_registered = true; break; case CellularNetwork::RegisteredSMSOnlyRoaming: is_roaming = true; // fall-through case CellularNetwork::RegisteredSMSOnlyHome: tr_warn("SMS only network registration!"); break; case CellularNetwork::RegisteredCSFBNotPreferredRoaming: is_roaming = true; // fall-through case CellularNetwork::RegisteredCSFBNotPreferredHome: tr_warn("Not preferred network registration!"); break; case CellularNetwork::AttachedEmergencyOnly: tr_warn("Emergency only network registration!"); break; case CellularNetwork::RegistrationDenied: case CellularNetwork::NotRegistered: case CellularNetwork::Unknown: case CellularNetwork::SearchingNetwork: default: break; } if (is_roaming) { tr_warn("Roaming cellular network!"); } return true; } void CellularConnectionFSM::report_failure(const char *msg) { tr_error("Cellular network failed: %s", msg); if (_status_callback) { _status_callback(_state, _next_state); } } const char *CellularConnectionFSM::get_state_string(CellularState state) { #if MBED_CONF_MBED_TRACE_ENABLE static const char *strings[] = { "Init", "Power", "Device ready", "SIM pin", "Registering network", "Manual registering", "Attaching network", "Activating PDP Context", "Connecting network", "Connected"}; return strings[state]; #else return NULL; #endif // #if MBED_CONF_MBED_TRACE_ENABLE } bool CellularConnectionFSM::is_registered_to_plmn() { int format; CellularNetwork::operator_t op; nsapi_error_t err = _network->get_operator_params(format, op); if (err == NSAPI_ERROR_OK) { if (format == 2) { // great, numeric format we can do comparison for that if (strcmp(op.op_num, _plmn) == 0) { return true; } return false; } // format was alpha, get operator names to do the comparing CellularNetwork::operator_names_list names_list; nsapi_error_t err = _network->get_operator_names(names_list); if (err == NSAPI_ERROR_OK) { CellularNetwork::operator_names_t *op_names = names_list.get_head(); bool found_match = false; while (op_names) { if (format == 0) { if (strcmp(op.op_long, op_names->alpha) == 0) { found_match = true; } } else if (format == 1) { if (strcmp(op.op_short, op_names->alpha) == 0) { found_match = true; } } if (found_match) { if (strcmp(_plmn, op_names->numeric)) { names_list.delete_all(); return true; } names_list.delete_all(); return false; } } } names_list.delete_all(); } return false; } nsapi_error_t CellularConnectionFSM::continue_from_state(CellularState state) { tr_info("Continue state from %s to %s", get_state_string((CellularConnectionFSM::CellularState)_state), get_state_string((CellularConnectionFSM::CellularState)state)); _state = state; _next_state = state; _retry_count = 0; if (!_queue.call_in(0, callback(this, &CellularConnectionFSM::event))) { stop(); return NSAPI_ERROR_NO_MEMORY; } return NSAPI_ERROR_OK; } nsapi_error_t CellularConnectionFSM::continue_to_state(CellularState state) { MBED_ASSERT(_cellularDevice); _retry_count = 0; if (state < _state) { _state = state; } else { // update next state so that we don't continue from previous state _state = _next_state; } if (!_queue.call_in(0, callback(this, &CellularConnectionFSM::event))) { stop(); return NSAPI_ERROR_NO_MEMORY; } return NSAPI_ERROR_OK; } void CellularConnectionFSM::enter_to_state(CellularState state) { _next_state = state; _retry_count = 0; _command_success = false; } void CellularConnectionFSM::retry_state_or_fail() { if (++_retry_count < MAX_RETRY_ARRAY_SIZE) { tr_debug("Retry State %s, retry %d/%d", get_state_string(_state), _retry_count, MAX_RETRY_ARRAY_SIZE); _event_timeout = _retry_timeout_array[_retry_count]; } else { report_failure(get_state_string(_state)); return; } } void CellularConnectionFSM::state_init() { // we should check that if power is already on then we can jump to device ready state _cellularDevice->set_timeout(TIMEOUT_POWER_ON); tr_info("Cellular state init (timeout %d ms)", TIMEOUT_POWER_ON); nsapi_error_t err = _power->is_device_ready(); if (err != NSAPI_ERROR_OK) { _event_timeout = _start_time; tr_info("Init state, waiting %d ms before POWER state)", _start_time); enter_to_state(STATE_POWER_ON); } else { tr_info("Device was ready to accept commands, jump to device ready"); enter_to_state(STATE_DEVICE_READY); } } void CellularConnectionFSM::state_power_on() { _cellularDevice->set_timeout(TIMEOUT_POWER_ON); tr_info("Cellular power ON (timeout %d ms)", TIMEOUT_POWER_ON); if (power_on()) { enter_to_state(STATE_DEVICE_READY); } else { // retry to power on device retry_state_or_fail(); } } bool CellularConnectionFSM::device_ready() { if (_cellularDevice->init_module(_serial) != NSAPI_ERROR_OK) { return false; } tr_info("Cellular device ready"); if (_event_status_cb) { _event_status_cb((nsapi_event_t)CellularDeviceReady, 0); } _power->remove_device_ready_urc_cb(mbed::callback(this, &CellularConnectionFSM::ready_urc_cb)); _cellularDevice->close_power(); _power = NULL; return true; } void CellularConnectionFSM::state_device_ready() { _cellularDevice->set_timeout(TIMEOUT_POWER_ON); if (_power->set_at_mode() == NSAPI_ERROR_OK) { if (device_ready()) { enter_to_state(STATE_SIM_PIN); } } else { if (_retry_count == 0) { (void)_power->set_device_ready_urc_cb(mbed::callback(this, &CellularConnectionFSM::ready_urc_cb)); } retry_state_or_fail(); } } void CellularConnectionFSM::state_sim_pin() { _cellularDevice->set_timeout(TIMEOUT_SIM_PIN); tr_info("Sim state (timeout %d ms)", TIMEOUT_SIM_PIN); if (open_sim()) { bool success = false; for (int type = 0; type < CellularNetwork::C_MAX; type++) { if (!_network->set_registration_urc((CellularNetwork::RegistrationType)type, true)) { success = true; } } if (!success) { tr_warn("Failed to set any URC's for registration"); retry_state_or_fail(); return; } if (_plmn) { enter_to_state(STATE_MANUAL_REGISTERING_NETWORK); } else { enter_to_state(STATE_REGISTERING_NETWORK); } } else { retry_state_or_fail(); } } void CellularConnectionFSM::state_registering() { _cellularDevice->set_timeout(TIMEOUT_NETWORK); if (is_registered()) { // we are already registered, go to attach enter_to_state(STATE_ATTACHING_NETWORK); } else { _cellularDevice->set_timeout(TIMEOUT_REGISTRATION); if (!_command_success) { _command_success = (_network->set_registration() == NSAPI_ERROR_OK); } retry_state_or_fail(); } } // only used when _plmn is set void CellularConnectionFSM::state_manual_registering_network() { _cellularDevice->set_timeout(TIMEOUT_REGISTRATION); tr_info("state_manual_registering_network"); if (!_plmn_network_found) { if (is_registered() && is_registered_to_plmn()) { _plmn_network_found = true; enter_to_state(STATE_ATTACHING_NETWORK); } else { if (!_command_success) { _command_success = (_network->set_registration(_plmn) == NSAPI_ERROR_OK); } retry_state_or_fail(); } } } void CellularConnectionFSM::state_attaching() { _cellularDevice->set_timeout(TIMEOUT_CONNECT); if (_network->set_attach() == NSAPI_ERROR_OK) { _cellularDevice->close_sim(); _sim = NULL; enter_to_state(STATE_ACTIVATING_PDP_CONTEXT); } else { retry_state_or_fail(); } } void CellularConnectionFSM::state_activating_pdp_context() { _cellularDevice->set_timeout(TIMEOUT_CONNECT); tr_info("Activate PDP Context (timeout %d ms)", TIMEOUT_CONNECT); if (_network->activate_context() == NSAPI_ERROR_OK) { // when using modems stack connect is synchronous _next_state = STATE_CONNECTING_NETWORK; } else { retry_state_or_fail(); } } void CellularConnectionFSM::state_connect_to_network() { _cellularDevice->set_timeout(TIMEOUT_CONNECT); tr_info("Connect to cellular network (timeout %d ms)", TIMEOUT_CONNECT); if (_network->connect() == NSAPI_ERROR_OK) { _cellularDevice->set_timeout(TIMEOUT_NETWORK); tr_debug("Connected to cellular network, set at timeout (timeout %d ms)", TIMEOUT_NETWORK); // when using modems stack connect is synchronous _next_state = STATE_CONNECTED; } else { retry_state_or_fail(); } } void CellularConnectionFSM::state_connected() { _cellularDevice->set_timeout(TIMEOUT_NETWORK); tr_debug("Cellular ready! (timeout %d ms)", TIMEOUT_NETWORK); if (_status_callback) { _status_callback(_state, _next_state); } } void CellularConnectionFSM::event() { _event_timeout = -1; switch (_state) { case STATE_INIT: state_init(); break; case STATE_POWER_ON: state_power_on(); break; case STATE_DEVICE_READY: state_device_ready(); break; case STATE_SIM_PIN: state_sim_pin(); break; case STATE_REGISTERING_NETWORK: state_registering(); break; case STATE_MANUAL_REGISTERING_NETWORK: state_manual_registering_network(); break; case STATE_ATTACHING_NETWORK: state_attaching(); break; case STATE_ACTIVATING_PDP_CONTEXT: state_activating_pdp_context(); break; case STATE_CONNECTING_NETWORK: state_connect_to_network(); break; case STATE_CONNECTED: state_connected(); break; default: MBED_ASSERT(0); break; } if (_next_state != _state || _event_timeout >= 0) { if (_next_state != _state) { // state exit condition tr_info("Cellular state from %s to %s", get_state_string((CellularConnectionFSM::CellularState)_state), get_state_string((CellularConnectionFSM::CellularState)_next_state)); if (_status_callback) { if (!_status_callback(_state, _next_state)) { return; } } } else { tr_info("Cellular event in %d seconds", _event_timeout); } _state = _next_state; if (_event_timeout == -1) { _event_timeout = 0; } _event_id = _queue.call_in(_event_timeout * 1000, callback(this, &CellularConnectionFSM::event)); if (!_event_id) { report_failure("Cellular event failure!"); return; } } } nsapi_error_t CellularConnectionFSM::start_dispatch() { MBED_ASSERT(!_queue_thread); _queue_thread = new rtos::Thread(osPriorityNormal, 2048); if (!_queue_thread) { stop(); return NSAPI_ERROR_NO_MEMORY; } if (_queue_thread->start(callback(&_queue, &events::EventQueue::dispatch_forever)) != osOK) { stop(); return NSAPI_ERROR_NO_MEMORY; } return NSAPI_ERROR_OK; } void CellularConnectionFSM::set_serial(UARTSerial *serial) { _serial = serial; } void CellularConnectionFSM::set_callback(mbed::Callback status_callback) { _status_callback = status_callback; } void CellularConnectionFSM::attach(mbed::Callback status_cb) { MBED_ASSERT(_network); _event_status_cb = status_cb; if (status_cb) { _network->attach(callback(this, &CellularConnectionFSM::network_callback)); } else { _network->attach(NULL); } } void CellularConnectionFSM::network_callback(nsapi_event_t ev, intptr_t ptr) { tr_info("FSM: network_callback called with event: %d, intptr: %d, _state: %s", ev, ptr, get_state_string(_state)); if ((cellular_connection_status_t)ev == CellularRegistrationStatusChanged && (_state == STATE_REGISTERING_NETWORK || _state == STATE_MANUAL_REGISTERING_NETWORK)) { // expect packet data so only these states are valid if (ptr == CellularNetwork::RegisteredHomeNetwork || ptr == CellularNetwork::RegisteredRoaming) { if (_plmn) { if (is_registered_to_plmn()) { if (!_plmn_network_found) { _plmn_network_found = true; _queue.cancel(_event_id); continue_from_state(STATE_ATTACHING_NETWORK); } } } else { _queue.cancel(_event_id); continue_from_state(STATE_ATTACHING_NETWORK); } } } if (_event_status_cb) { _event_status_cb(ev, ptr); } } void CellularConnectionFSM::ready_urc_cb() { tr_debug("Device ready URC func called"); if (_state == STATE_DEVICE_READY && _power->set_at_mode() == NSAPI_ERROR_OK) { tr_debug("State was STATE_DEVICE_READY and at mode ready, cancel state and move to next"); if (device_ready()) { _queue.cancel(_event_id); continue_from_state(STATE_SIM_PIN); } } } events::EventQueue *CellularConnectionFSM::get_queue() { return &_queue; } CellularNetwork *CellularConnectionFSM::get_network() { return _network; } CellularDevice *CellularConnectionFSM::get_device() { return _cellularDevice; } CellularSIM *CellularConnectionFSM::get_sim() { return _sim; } NetworkStack *CellularConnectionFSM::get_stack() { return _cellularDevice->get_stack(); } void CellularConnectionFSM::set_retry_timeout_array(uint16_t timeout[], int array_len) { _retry_array_length = array_len > MAX_RETRY_ARRAY_SIZE ? MAX_RETRY_ARRAY_SIZE : array_len; for (int i = 0; i < _retry_array_length; i++) { _retry_timeout_array[i] = timeout[i]; } } } // namespace #endif // CELLULAR_DEVICE