mbed-os/targets/TARGET_STM/can_api.c

1220 lines
36 KiB
C

/* mbed Microcontroller Library
* Copyright (c) 2006-2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "can_api.h"
#if DEVICE_CAN
#ifdef FDCAN1
#include "pinmap.h"
#include "PeripheralPins.h"
#include "mbed_error.h"
static uint32_t can_irq_ids[2] = {0};
static can_irq_handler irq_handler;
/** Call all the init functions
*
* @returns
* 0 if mode change failed or unsupported,
* 1 if mode change was successful
*/
int can_internal_init(can_t *obj)
{
if (HAL_FDCAN_Init(&obj->CanHandle) != HAL_OK) {
error("HAL_FDCAN_Init error\n");
}
if (can_filter(obj, 0, 0, CANStandard, 0) == 0) {
error("can_filter error\n");
}
if (can_filter(obj, 0, 0, CANExtended, 0) == 0) {
error("can_filter error\n");
}
if (HAL_FDCAN_ConfigGlobalFilter(&obj->CanHandle, FDCAN_REJECT, FDCAN_REJECT, FDCAN_FILTER_REMOTE, FDCAN_FILTER_REMOTE) != HAL_OK) {
error("HAL_FDCAN_ConfigGlobalFilter error\n");
}
if (HAL_FDCAN_Start(&obj->CanHandle) != HAL_OK) {
error("HAL_FDCAN_Start error\n");
}
return 1;
}
void can_init(can_t *obj, PinName rd, PinName td)
{
/* default frequency is 100 kHz */
can_init_freq(obj, rd, td, 100000);
}
void can_init_freq(can_t *obj, PinName rd, PinName td, int hz)
{
CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD);
CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD);
CANName can = (CANName)pinmap_merge(can_rd, can_td);
MBED_ASSERT((int)can != NC);
__HAL_RCC_FDCAN_CLK_ENABLE();
if (can == CAN_1) {
obj->index = 0;
}
#if defined(FDCAN2_BASE)
else if (can == CAN_2) {
obj->index = 1;
}
#endif
else {
error("can_init wrong instance\n");
return;
}
// Select PLL1Q as source of FDCAN clock
RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit;
RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;
RCC_PeriphClkInit.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL; // 10 MHz (RCC_OscInitStruct.PLL.PLLQ = 80)
if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) {
error("HAL_RCCEx_PeriphCLKConfig error\n");
}
// Configure CAN pins
pinmap_pinout(rd, PinMap_CAN_RD);
pinmap_pinout(td, PinMap_CAN_TD);
// Add pull-ups
if (rd != NC) {
pin_mode(rd, PullUp);
}
if (td != NC) {
pin_mode(td, PullUp);
}
// Default values
obj->CanHandle.Instance = (FDCAN_GlobalTypeDef *)can;
/* Bit time parameter
ex with 100 kHz requested frequency hz
fdcan_ker_ck | 10 MHz | 10 MHz
Prescaler | 1 | 1
Time_quantum (tq) | 100 ns | 100 ns
Bit_rate | 0.1 MBit/s | <hz>
Bit_length | 10 µs = 100 tq | <n_tq> = 10 000 000 / <hz>
Synchronization_segment | 1 tq | 1 tq
Phase_segment_1 | 69 tq | <nts1> = <n_tq> * 0.75
Phase_segment_2 | 30 tq | <nts2> = <n_tq> - 1 - <nts1>
Synchronization_Jump_width | 30 tq | <nsjw> = <nts2>
*/
int ntq = 10000000 / hz;
obj->CanHandle.Init.FrameFormat = FDCAN_FRAME_CLASSIC;
obj->CanHandle.Init.Mode = FDCAN_MODE_NORMAL;
obj->CanHandle.Init.AutoRetransmission = ENABLE;
obj->CanHandle.Init.TransmitPause = DISABLE;
obj->CanHandle.Init.ProtocolException = ENABLE;
obj->CanHandle.Init.NominalPrescaler = 1; // Prescaler
obj->CanHandle.Init.NominalTimeSeg1 = ntq * 0.75; // Phase_segment_1
obj->CanHandle.Init.NominalTimeSeg2 = ntq - 1 - obj->CanHandle.Init.NominalTimeSeg1; // Phase_segment_2
obj->CanHandle.Init.NominalSyncJumpWidth = obj->CanHandle.Init.NominalTimeSeg2; // Synchronization_Jump_width
obj->CanHandle.Init.DataPrescaler = 0x1; // Not used - only in FDCAN
obj->CanHandle.Init.DataSyncJumpWidth = 0x1; // Not used - only in FDCAN
obj->CanHandle.Init.DataTimeSeg1 = 0x1; // Not used - only in FDCAN
obj->CanHandle.Init.DataTimeSeg2 = 0x1; // Not used - only in FDCAN
obj->CanHandle.Init.MessageRAMOffset = 0;
obj->CanHandle.Init.StdFiltersNbr = 1; // to be aligned with the handle parameter in can_filter
obj->CanHandle.Init.ExtFiltersNbr = 1; // to be aligned with the handle parameter in can_filter
obj->CanHandle.Init.RxFifo0ElmtsNbr = 8;
obj->CanHandle.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8;
obj->CanHandle.Init.RxFifo1ElmtsNbr = 0;
obj->CanHandle.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;
obj->CanHandle.Init.RxBuffersNbr = 0;
obj->CanHandle.Init.RxBufferSize = FDCAN_DATA_BYTES_8;
obj->CanHandle.Init.TxEventsNbr = 3;
obj->CanHandle.Init.TxBuffersNbr = 0;
obj->CanHandle.Init.TxFifoQueueElmtsNbr = 3;
obj->CanHandle.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;
obj->CanHandle.Init.TxElmtSize = FDCAN_DATA_BYTES_8;
can_internal_init(obj);
}
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id)
{
irq_handler = handler;
can_irq_ids[obj->index] = id;
}
void can_irq_free(can_t *obj)
{
CANName can = (CANName)obj->CanHandle.Instance;
if (can == CAN_1) {
HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn);
}
#if defined(FDCAN2_BASE)
else if (can == CAN_2) {
HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn);
HAL_NVIC_DisableIRQ(FDCAN2_IT1_IRQn);
}
#endif
else {
return;
}
HAL_NVIC_DisableIRQ(FDCAN_CAL_IRQn);
can_irq_ids[obj->index] = 0;
}
void can_free(can_t *obj)
{
__HAL_RCC_FDCAN_FORCE_RESET();
__HAL_RCC_FDCAN_RELEASE_RESET();
__HAL_RCC_FDCAN_CLK_DISABLE();
}
/** Reset CAN interface.
*
* To use after error overflow.
*/
void can_reset(can_t *obj)
{
can_mode(obj, MODE_RESET);
HAL_FDCAN_ResetTimeoutCounter(&obj->CanHandle);
HAL_FDCAN_ResetTimestampCounter(&obj->CanHandle);
}
int can_frequency(can_t *obj, int f)
{
if (HAL_FDCAN_Stop(&obj->CanHandle) != HAL_OK) {
error("HAL_FDCAN_Stop error\n");
}
/* See can_init_freq function for calculation details */
int ntq = 10000000 / f;
obj->CanHandle.Init.NominalTimeSeg1 = ntq * 0.75; // Phase_segment_1
obj->CanHandle.Init.NominalTimeSeg2 = ntq - 1 - obj->CanHandle.Init.NominalTimeSeg1; // Phase_segment_2
obj->CanHandle.Init.NominalSyncJumpWidth = obj->CanHandle.Init.NominalTimeSeg2; // Synchronization_Jump_width
return can_internal_init(obj);
}
/** Filter out incoming messages
*
* @param obj CAN object
* @param id the id to filter on
* @param mask the mask applied to the id
* @param format format to filter on
* @param handle message filter handle (not supported yet)
*
* @returns
* 0 if filter change failed or unsupported,
* new filter handle if successful (not supported yet => returns 1)
*/
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle)
{
UNUSED(handle); // Not supported yet (seems to be a used in read function?)
FDCAN_FilterTypeDef sFilterConfig = {0};
if (format == CANStandard) {
sFilterConfig.IdType = FDCAN_STANDARD_ID;
sFilterConfig.FilterIndex = 0;
sFilterConfig.FilterType = FDCAN_FILTER_MASK;
sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
sFilterConfig.FilterID1 = id;
sFilterConfig.FilterID2 = mask;
} else if (format == CANExtended) {
sFilterConfig.IdType = FDCAN_EXTENDED_ID;
sFilterConfig.FilterIndex = 0;
sFilterConfig.FilterType = FDCAN_FILTER_MASK;
sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
sFilterConfig.FilterID1 = id;
sFilterConfig.FilterID2 = mask;
} else { // Filter for CANAny format cannot be configured for STM32
return 0;
}
if (HAL_FDCAN_ConfigFilter(&obj->CanHandle, &sFilterConfig) != HAL_OK) {
return 0;
}
return 1;
}
int can_write(can_t *obj, CAN_Message msg, int cc)
{
FDCAN_TxHeaderTypeDef TxHeader = {0};
UNUSED(cc);
// Configure Tx buffer message
TxHeader.Identifier = msg.id;
if (msg.format == CANStandard) {
TxHeader.IdType = FDCAN_STANDARD_ID;
} else {
TxHeader.IdType = FDCAN_EXTENDED_ID;
}
TxHeader.TxFrameType = FDCAN_DATA_FRAME;
TxHeader.DataLength = msg.len << 16;
TxHeader.ErrorStateIndicator = FDCAN_ESI_ACTIVE;
TxHeader.BitRateSwitch = FDCAN_BRS_OFF;
TxHeader.FDFormat = FDCAN_CLASSIC_CAN;
TxHeader.TxEventFifoControl = FDCAN_STORE_TX_EVENTS;
TxHeader.MessageMarker = 0;
if (HAL_FDCAN_AddMessageToTxFifoQ(&obj->CanHandle, &TxHeader, msg.data) != HAL_OK) {
// Note for debug: you can get the error code calling HAL_FDCAN_GetError(&obj->CanHandle)
return 0;
}
return 1;
}
int can_read(can_t *obj, CAN_Message *msg, int handle)
{
UNUSED(handle); // Not supported yet (seems to be a handle to a filter configuration?)
if (HAL_FDCAN_GetRxFifoFillLevel(&obj->CanHandle, FDCAN_RX_FIFO0) == 0) {
return 0; // No message arrived
}
FDCAN_RxHeaderTypeDef RxHeader = {0};
if (HAL_FDCAN_GetRxMessage(&obj->CanHandle, FDCAN_RX_FIFO0, &RxHeader, msg->data) != HAL_OK) {
error("HAL_FDCAN_GetRxMessage error\n"); // Should not occur as previous HAL_FDCAN_GetRxFifoFillLevel call reported some data
return 0;
}
if (RxHeader.IdType == FDCAN_STANDARD_ID) {
msg->format = CANStandard;
} else {
msg->format = CANExtended;
}
msg->id = RxHeader.Identifier;
msg->type = CANData;
msg->len = RxHeader.DataLength >> 16; // see FDCAN_data_length_code value
return 1;
}
unsigned char can_rderror(can_t *obj)
{
FDCAN_ErrorCountersTypeDef ErrorCounters;
HAL_FDCAN_GetErrorCounters(&obj->CanHandle, &ErrorCounters);
return (unsigned char)ErrorCounters.RxErrorCnt;
}
unsigned char can_tderror(can_t *obj)
{
FDCAN_ErrorCountersTypeDef ErrorCounters;
HAL_FDCAN_GetErrorCounters(&obj->CanHandle, &ErrorCounters);
return (unsigned char)ErrorCounters.TxErrorCnt;
}
void can_monitor(can_t *obj, int silent)
{
CanMode mode = MODE_NORMAL;
if (silent) {
switch (obj->CanHandle.Init.Mode) {
case FDCAN_MODE_INTERNAL_LOOPBACK:
mode = MODE_TEST_SILENT;
break;
default:
mode = MODE_SILENT;
break;
}
} else {
switch (obj->CanHandle.Init.Mode) {
case FDCAN_MODE_INTERNAL_LOOPBACK:
case FDCAN_MODE_EXTERNAL_LOOPBACK:
mode = MODE_TEST_LOCAL;
break;
default:
mode = MODE_NORMAL;
break;
}
}
can_mode(obj, mode);
}
/** Change CAN operation to the specified mode
*
* @param mode The new operation mode (MODE_RESET, MODE_NORMAL, MODE_SILENT, MODE_TEST_LOCAL, MODE_TEST_GLOBAL, MODE_TEST_SILENT)
*
* @returns
* 0 if mode change failed or unsupported,
* 1 if mode change was successful
*/
int can_mode(can_t *obj, CanMode mode)
{
if (HAL_FDCAN_Stop(&obj->CanHandle) != HAL_OK) {
error("HAL_FDCAN_Stop error\n");
}
switch (mode) {
case MODE_RESET:
break;
case MODE_NORMAL:
obj->CanHandle.Init.Mode = FDCAN_MODE_NORMAL;
// obj->CanHandle.Init.NominalPrescaler = 100; // Prescaler
break;
case MODE_SILENT: // Bus Monitoring
obj->CanHandle.Init.Mode = FDCAN_MODE_BUS_MONITORING;
break;
case MODE_TEST_GLOBAL: // External LoopBack
case MODE_TEST_LOCAL:
obj->CanHandle.Init.Mode = FDCAN_MODE_EXTERNAL_LOOPBACK;
break;
case MODE_TEST_SILENT: // Internal LoopBack
obj->CanHandle.Init.Mode = FDCAN_MODE_INTERNAL_LOOPBACK;
// obj->CanHandle.Init.NominalPrescaler = 1; // Prescaler
break;
default:
return 0;
}
return can_internal_init(obj);
}
static void can_irq(CANName name, int id)
{
FDCAN_HandleTypeDef CanHandle;
CanHandle.Instance = (FDCAN_GlobalTypeDef *)name;
if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_TX_COMPLETE)) {
if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_TX_COMPLETE)) {
__HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_TX_COMPLETE);
irq_handler(can_irq_ids[id], IRQ_TX);
}
}
if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_RX_BUFFER_NEW_MESSAGE)) {
if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_IT_RX_BUFFER_NEW_MESSAGE)) {
__HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_IT_RX_BUFFER_NEW_MESSAGE);
irq_handler(can_irq_ids[id], IRQ_RX);
}
}
if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_ERROR_WARNING)) {
if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_ERROR_WARNING)) {
__HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_ERROR_WARNING);
irq_handler(can_irq_ids[id], IRQ_ERROR);
}
}
if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_ERROR_PASSIVE)) {
if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_ERROR_PASSIVE)) {
__HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_ERROR_PASSIVE);
irq_handler(can_irq_ids[id], IRQ_PASSIVE);
}
}
if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_BUS_OFF)) {
if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_BUS_OFF)) {
__HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_BUS_OFF);
irq_handler(can_irq_ids[id], IRQ_BUS);
}
}
}
void FDCAN1_IT0_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
void FDCAN1_IT1_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
void FDCAN2_IT0_IRQHandler(void)
{
can_irq(CAN_2, 1);
}
void FDCAN2_IT1_IRQHandler(void)
{
can_irq(CAN_2, 1);
}
// TODO Add other interrupts ?
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable)
{
uint32_t interrupts = 0;
switch (type) {
case IRQ_TX:
interrupts = FDCAN_IT_TX_COMPLETE;
break;
case IRQ_RX:
interrupts = FDCAN_IT_RX_BUFFER_NEW_MESSAGE;
break;
case IRQ_ERROR:
interrupts = FDCAN_IT_ERROR_WARNING;
break;
case IRQ_PASSIVE:
interrupts = FDCAN_IT_ERROR_PASSIVE;
break;
case IRQ_BUS:
interrupts = FDCAN_IT_BUS_OFF;
default:
return;
}
if (enable) {
HAL_FDCAN_ActivateNotification(&obj->CanHandle, interrupts, 0);
} else {
HAL_FDCAN_DeactivateNotification(&obj->CanHandle, interrupts);
}
NVIC_SetVector(FDCAN1_IT0_IRQn, (uint32_t)&FDCAN1_IT0_IRQHandler);
NVIC_EnableIRQ(FDCAN1_IT0_IRQn);
NVIC_SetVector(FDCAN1_IT1_IRQn, (uint32_t)&FDCAN1_IT1_IRQHandler);
NVIC_EnableIRQ(FDCAN1_IT1_IRQn);
#if defined(FDCAN2_BASE)
NVIC_SetVector(FDCAN2_IT0_IRQn, (uint32_t)&FDCAN2_IT0_IRQHandler);
NVIC_EnableIRQ(FDCAN2_IT0_IRQn);
NVIC_SetVector(FDCAN2_IT1_IRQn, (uint32_t)&FDCAN2_IT1_IRQHandler);
NVIC_EnableIRQ(FDCAN2_IT1_IRQn);
#endif
}
#else /* FDCAN1 */
#include "cmsis.h"
#include "pinmap.h"
#include "PeripheralPins.h"
#include "mbed_error.h"
#include "can_device.h" // Specific to STM32 serie
#include <math.h>
#include <string.h>
#include <inttypes.h>
static uint32_t can_irq_ids[CAN_NUM] = {0};
static can_irq_handler irq_handler;
static void can_registers_init(can_t *obj)
{
if (HAL_CAN_Init(&obj->CanHandle) != HAL_OK) {
error("Cannot initialize CAN");
}
// Set initial CAN frequency to specified frequency
if (can_frequency(obj, obj->hz) != 1) {
error("Can frequency could not be set\n");
}
}
void can_init(can_t *obj, PinName rd, PinName td)
{
can_init_freq(obj, rd, td, 100000);
}
void can_init_freq(can_t *obj, PinName rd, PinName td, int hz)
{
CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD);
CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD);
CANName can = (CANName)pinmap_merge(can_rd, can_td);
MBED_ASSERT((int)can != NC);
if (can == CAN_1) {
__HAL_RCC_CAN1_CLK_ENABLE();
obj->index = 0;
}
#if defined(CAN2_BASE) && (CAN_NUM > 1)
else if (can == CAN_2) {
__HAL_RCC_CAN1_CLK_ENABLE(); // needed to set filters
__HAL_RCC_CAN2_CLK_ENABLE();
obj->index = 1;
}
#endif
#if defined(CAN3_BASE) && (CAN_NUM > 2)
else if (can == CAN_3) {
__HAL_RCC_CAN3_CLK_ENABLE();
obj->index = 2;
}
#endif
else {
return;
}
// Configure the CAN pins
pinmap_pinout(rd, PinMap_CAN_RD);
pinmap_pinout(td, PinMap_CAN_TD);
if (rd != NC) {
pin_mode(rd, PullUp);
}
if (td != NC) {
pin_mode(td, PullUp);
}
/* Use default values for rist init */
obj->CanHandle.Instance = (CAN_TypeDef *)can;
obj->CanHandle.Init.TTCM = DISABLE;
obj->CanHandle.Init.ABOM = DISABLE;
obj->CanHandle.Init.AWUM = DISABLE;
obj->CanHandle.Init.NART = DISABLE;
obj->CanHandle.Init.RFLM = DISABLE;
obj->CanHandle.Init.TXFP = DISABLE;
obj->CanHandle.Init.Mode = CAN_MODE_NORMAL;
obj->CanHandle.Init.SJW = CAN_SJW_1TQ;
obj->CanHandle.Init.BS1 = CAN_BS1_6TQ;
obj->CanHandle.Init.BS2 = CAN_BS2_8TQ;
obj->CanHandle.Init.Prescaler = 2;
/* Store frequency to be restored in case of reset */
obj->hz = hz;
can_registers_init(obj);
/* Bits 27:14 are available for dual CAN configuration and are reserved for
single CAN configuration: */
#if defined(CAN3_BASE) && (CAN_NUM > 2)
uint32_t filter_number = (can == CAN_1 || can == CAN_3) ? 0 : 14;
#else
uint32_t filter_number = (can == CAN_1) ? 0 : 14;
#endif
can_filter(obj, 0, 0, CANStandard, filter_number);
}
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id)
{
irq_handler = handler;
can_irq_ids[obj->index] = id;
}
void can_irq_free(can_t *obj)
{
CAN_TypeDef *can = obj->CanHandle.Instance;
can->IER &= ~(CAN_IT_FMP0 | CAN_IT_FMP1 | CAN_IT_TME | \
CAN_IT_ERR | CAN_IT_EPV | CAN_IT_BOF);
can_irq_ids[obj->index] = 0;
}
void can_free(can_t *obj)
{
CANName can = (CANName) obj->CanHandle.Instance;
// Reset CAN and disable clock
if (can == CAN_1) {
__HAL_RCC_CAN1_FORCE_RESET();
__HAL_RCC_CAN1_RELEASE_RESET();
__HAL_RCC_CAN1_CLK_DISABLE();
}
#if defined(CAN2_BASE) && (CAN_NUM > 1)
if (can == CAN_2) {
__HAL_RCC_CAN2_FORCE_RESET();
__HAL_RCC_CAN2_RELEASE_RESET();
__HAL_RCC_CAN2_CLK_DISABLE();
}
#endif
#if defined(CAN3_BASE) && (CAN_NUM > 2)
if (can == CAN_3) {
__HAL_RCC_CAN3_FORCE_RESET();
__HAL_RCC_CAN3_RELEASE_RESET();
__HAL_RCC_CAN3_CLK_DISABLE();
}
#endif
}
// The following table is used to program bit_timing. It is an adjustment of the sample
// point by synchronizing on the start-bit edge and resynchronizing on the following edges.
// This table has the sampling points as close to 75% as possible (most commonly used).
// The first value is TSEG1, the second TSEG2.
static const int timing_pts[23][2] = {
{0x0, 0x0}, // 2, 50%
{0x1, 0x0}, // 3, 67%
{0x2, 0x0}, // 4, 75%
{0x3, 0x0}, // 5, 80%
{0x3, 0x1}, // 6, 67%
{0x4, 0x1}, // 7, 71%
{0x5, 0x1}, // 8, 75%
{0x6, 0x1}, // 9, 78%
{0x6, 0x2}, // 10, 70%
{0x7, 0x2}, // 11, 73%
{0x8, 0x2}, // 12, 75%
{0x9, 0x2}, // 13, 77%
{0x9, 0x3}, // 14, 71%
{0xA, 0x3}, // 15, 73%
{0xB, 0x3}, // 16, 75%
{0xC, 0x3}, // 17, 76%
{0xD, 0x3}, // 18, 78%
{0xD, 0x4}, // 19, 74%
{0xE, 0x4}, // 20, 75%
{0xF, 0x4}, // 21, 76%
{0xF, 0x5}, // 22, 73%
{0xF, 0x6}, // 23, 70%
{0xF, 0x7}, // 24, 67%
};
static unsigned int can_speed(unsigned int pclk, unsigned int cclk, unsigned char psjw)
{
uint32_t btr;
uint16_t brp = 0;
uint32_t calcbit;
uint32_t bitwidth;
int hit = 0;
int bits;
bitwidth = (pclk / cclk);
brp = bitwidth / 0x18;
while ((!hit) && (brp < bitwidth / 4)) {
brp++;
for (bits = 22; bits > 0; bits--) {
calcbit = (bits + 3) * (brp + 1);
if (calcbit == bitwidth) {
hit = 1;
break;
}
}
}
if (hit) {
btr = ((timing_pts[bits][1] << CAN_BTR_TS2_Pos) & CAN_BTR_TS2) |
((timing_pts[bits][0] << CAN_BTR_TS1_Pos) & CAN_BTR_TS1) |
((psjw << CAN_BTR_SJW_Pos) & CAN_BTR_SJW) |
((brp << CAN_BTR_BRP_Pos) & CAN_BTR_BRP);
} else {
btr = 0xFFFFFFFF;
}
return btr;
}
int can_frequency(can_t *obj, int f)
{
int pclk = HAL_RCC_GetPCLK1Freq();
int btr = can_speed(pclk, (unsigned int)f, 1);
CAN_TypeDef *can = obj->CanHandle.Instance;
uint32_t tickstart = 0;
int status = 1;
if (btr > 0) {
can->MCR |= CAN_MCR_INRQ ;
/* Get tick */
tickstart = HAL_GetTick();
while ((can->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) {
if ((HAL_GetTick() - tickstart) > 2) {
status = 0;
break;
}
}
if (status != 0) {
/* Do not erase all BTR registers (e.g. silent mode), only the
* ones calculated in can_speed */
can->BTR &= ~(CAN_BTR_TS2 | CAN_BTR_TS1 | CAN_BTR_SJW | CAN_BTR_BRP);
can->BTR |= btr;
can->MCR &= ~(uint32_t)CAN_MCR_INRQ;
/* Get tick */
tickstart = HAL_GetTick();
while ((can->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) {
if ((HAL_GetTick() - tickstart) > 2) {
status = 0;
break;
}
}
if (status == 0) {
error("can ESR 0x%04" PRIx32 ".%04" PRIx32 " + timeout status %d", (can->ESR & 0xFFFF0000) >> 16, (can->ESR & 0xFFFF), status);
}
} else {
error("can init request timeout\n");
}
} else {
status = 0;
}
return status;
}
int can_write(can_t *obj, CAN_Message msg, int cc)
{
uint32_t transmitmailbox = CAN_TXSTATUS_NOMAILBOX;
CAN_TypeDef *can = obj->CanHandle.Instance;
/* Select one empty transmit mailbox */
if ((can->TSR & CAN_TSR_TME0) == CAN_TSR_TME0) {
transmitmailbox = 0;
} else if ((can->TSR & CAN_TSR_TME1) == CAN_TSR_TME1) {
transmitmailbox = 1;
} else if ((can->TSR & CAN_TSR_TME2) == CAN_TSR_TME2) {
transmitmailbox = 2;
} else {
return 0;
}
can->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ;
if (!(msg.format)) {
can->sTxMailBox[transmitmailbox].TIR |= ((msg.id << 21) | (msg.type << 1));
} else {
can->sTxMailBox[transmitmailbox].TIR |= ((msg.id << 3) | CAN_ID_EXT | (msg.type << 1));
}
/* Set up the DLC */
can->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0;
can->sTxMailBox[transmitmailbox].TDTR |= (msg.len & (uint8_t)0x0000000F);
/* Set up the data field */
can->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)msg.data[3] << 24) |
((uint32_t)msg.data[2] << 16) |
((uint32_t)msg.data[1] << 8) |
((uint32_t)msg.data[0]));
can->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)msg.data[7] << 24) |
((uint32_t)msg.data[6] << 16) |
((uint32_t)msg.data[5] << 8) |
((uint32_t)msg.data[4]));
/* Request transmission */
can->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ;
return 1;
}
int can_read(can_t *obj, CAN_Message *msg, int handle)
{
//handle is the FIFO number
CAN_TypeDef *can = obj->CanHandle.Instance;
// check FPM0 which holds the pending message count in FIFO 0
// if no message is pending, return 0
if ((can->RF0R & CAN_RF0R_FMP0) == 0) {
return 0;
}
/* Get the Id */
msg->format = (CANFormat)(((uint8_t)0x04 & can->sFIFOMailBox[handle].RIR) >> 2);
if (!msg->format) {
msg->id = (uint32_t)0x000007FF & (can->sFIFOMailBox[handle].RIR >> 21);
} else {
msg->id = (uint32_t)0x1FFFFFFF & (can->sFIFOMailBox[handle].RIR >> 3);
}
msg->type = (CANType)(((uint8_t)0x02 & can->sFIFOMailBox[handle].RIR) >> 1);
/* Get the DLC */
msg->len = (uint8_t)0x0F & can->sFIFOMailBox[handle].RDTR;
/* Get the FMI */
// msg->FMI = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDTR >> 8);
/* Get the data field */
msg->data[0] = (uint8_t)0xFF & can->sFIFOMailBox[handle].RDLR;
msg->data[1] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 8);
msg->data[2] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 16);
msg->data[3] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 24);
msg->data[4] = (uint8_t)0xFF & can->sFIFOMailBox[handle].RDHR;
msg->data[5] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 8);
msg->data[6] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 16);
msg->data[7] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 24);
/* Release the FIFO */
if (handle == CAN_FIFO0) {
/* Release FIFO0 */
can->RF0R |= CAN_RF0R_RFOM0;
} else { /* FIFONumber == CAN_FIFO1 */
/* Release FIFO1 */
can->RF1R |= CAN_RF1R_RFOM1;
}
return 1;
}
void can_reset(can_t *obj)
{
CAN_TypeDef *can = obj->CanHandle.Instance;
/* Reset IP and delete errors */
can->MCR |= CAN_MCR_RESET;
can->ESR = 0x0;
/* restore registers state as saved in obj context */
can_registers_init(obj);
}
unsigned char can_rderror(can_t *obj)
{
CAN_TypeDef *can = obj->CanHandle.Instance;
return (can->ESR >> 24) & 0xFF;
}
unsigned char can_tderror(can_t *obj)
{
CAN_TypeDef *can = obj->CanHandle.Instance;
return (can->ESR >> 16) & 0xFF;
}
void can_monitor(can_t *obj, int silent)
{
CanMode mode = MODE_NORMAL;
/* Update current state w/ or w/o silent */
if (silent) {
switch (obj->CanHandle.Init.Mode) {
case CAN_MODE_LOOPBACK:
case CAN_MODE_SILENT_LOOPBACK:
mode = MODE_TEST_SILENT;
break;
default:
mode = MODE_SILENT;
break;
}
} else {
switch (obj->CanHandle.Init.Mode) {
case CAN_MODE_LOOPBACK:
case CAN_MODE_SILENT_LOOPBACK:
mode = MODE_TEST_LOCAL;
break;
default:
mode = MODE_NORMAL;
break;
}
}
can_mode(obj, mode);
}
int can_mode(can_t *obj, CanMode mode)
{
int success = 0;
CAN_TypeDef *can = obj->CanHandle.Instance;
can->MCR |= CAN_MCR_INRQ ;
while ((can->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) {
}
switch (mode) {
case MODE_NORMAL:
obj->CanHandle.Init.Mode = CAN_MODE_NORMAL;
can->BTR &= ~(CAN_BTR_SILM | CAN_BTR_LBKM);
success = 1;
break;
case MODE_SILENT:
obj->CanHandle.Init.Mode = CAN_MODE_SILENT;
can->BTR |= CAN_BTR_SILM;
can->BTR &= ~CAN_BTR_LBKM;
success = 1;
break;
case MODE_TEST_GLOBAL:
case MODE_TEST_LOCAL:
obj->CanHandle.Init.Mode = CAN_MODE_LOOPBACK;
can->BTR |= CAN_BTR_LBKM;
can->BTR &= ~CAN_BTR_SILM;
success = 1;
break;
case MODE_TEST_SILENT:
obj->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK;
can->BTR |= (CAN_BTR_SILM | CAN_BTR_LBKM);
success = 1;
break;
default:
success = 0;
break;
}
can->MCR &= ~(uint32_t)CAN_MCR_INRQ;
while ((can->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) {
}
return success;
}
int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle)
{
// filter for CANAny format cannot be configured for STM32
if ((format == CANStandard) || (format == CANExtended)) {
CAN_FilterConfTypeDef sFilterConfig;
sFilterConfig.FilterNumber = handle;
sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
if (format == CANStandard) {
sFilterConfig.FilterIdHigh = id << 5;
sFilterConfig.FilterIdLow = 0x0;
sFilterConfig.FilterMaskIdHigh = mask << 5;
sFilterConfig.FilterMaskIdLow = 0x0; // allows both remote and data frames
} else { // format == CANExtended
sFilterConfig.FilterIdHigh = id >> 13; // EXTID[28:13]
sFilterConfig.FilterIdLow = (0xFFFF & (id << 3)) | (1 << 2); // EXTID[12:0] + IDE
sFilterConfig.FilterMaskIdHigh = mask >> 13;
sFilterConfig.FilterMaskIdLow = (0xFFFF & (mask << 3)) | (1 << 2);
}
sFilterConfig.FilterFIFOAssignment = 0;
sFilterConfig.FilterActivation = ENABLE;
sFilterConfig.BankNumber = 14 + handle;
HAL_CAN_ConfigFilter(&obj->CanHandle, &sFilterConfig);
}
return 1;
}
static void can_irq(CANName name, int id)
{
uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0;
CAN_HandleTypeDef CanHandle;
CanHandle.Instance = (CAN_TypeDef *)name;
if (__HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_TME)) {
tmp1 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_0);
tmp2 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_1);
tmp3 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_2);
if (tmp1) {
__HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP0);
}
if (tmp2) {
__HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP1);
}
if (tmp3) {
__HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP2);
}
if (tmp1 || tmp2 || tmp3) {
irq_handler(can_irq_ids[id], IRQ_TX);
}
}
tmp1 = __HAL_CAN_MSG_PENDING(&CanHandle, CAN_FIFO0);
tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_FMP0);
if ((tmp1 != 0) && tmp2) {
irq_handler(can_irq_ids[id], IRQ_RX);
}
tmp1 = __HAL_CAN_GET_FLAG(&CanHandle, CAN_FLAG_EPV);
tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_EPV);
tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR);
if (tmp1 && tmp2 && tmp3) {
irq_handler(can_irq_ids[id], IRQ_PASSIVE);
}
tmp1 = __HAL_CAN_GET_FLAG(&CanHandle, CAN_FLAG_BOF);
tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_BOF);
tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR);
if (tmp1 && tmp2 && tmp3) {
irq_handler(can_irq_ids[id], IRQ_BUS);
}
tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR);
if (tmp1 && tmp2 && tmp3) {
irq_handler(can_irq_ids[id], IRQ_ERROR);
}
}
#if defined(TARGET_STM32F0)
void CAN_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
#elif defined(TARGET_STM32F3)
void CAN_RX0_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
void CAN_TX_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
void CAN_SCE_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
#else
void CAN1_RX0_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
void CAN1_TX_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
void CAN1_SCE_IRQHandler(void)
{
can_irq(CAN_1, 0);
}
#if defined(CAN2_BASE) && (CAN_NUM > 1)
void CAN2_RX0_IRQHandler(void)
{
can_irq(CAN_2, 1);
}
void CAN2_TX_IRQHandler(void)
{
can_irq(CAN_2, 1);
}
void CAN2_SCE_IRQHandler(void)
{
can_irq(CAN_2, 1);
}
#endif
#if defined(CAN3_BASE) && (CAN_NUM > 2)
void CAN3_RX0_IRQHandler(void)
{
can_irq(CAN_3, 2);
}
void CAN3_TX_IRQHandler(void)
{
can_irq(CAN_3, 2);
}
void CAN3_SCE_IRQHandler(void)
{
can_irq(CAN_3, 2);
}
#endif
#endif // else
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable)
{
CAN_TypeDef *can = obj->CanHandle.Instance;
IRQn_Type irq_n = (IRQn_Type)0;
uint32_t vector = 0;
uint32_t ier;
if ((CANName) can == CAN_1) {
switch (type) {
case IRQ_RX:
ier = CAN_IT_FMP0;
irq_n = CAN1_IRQ_RX_IRQN;
vector = (uint32_t)&CAN1_IRQ_RX_VECT;
break;
case IRQ_TX:
ier = CAN_IT_TME;
irq_n = CAN1_IRQ_TX_IRQN;
vector = (uint32_t)&CAN1_IRQ_TX_VECT;
break;
case IRQ_ERROR:
ier = CAN_IT_ERR;
irq_n = CAN1_IRQ_ERROR_IRQN;
vector = (uint32_t)&CAN1_IRQ_ERROR_VECT;
break;
case IRQ_PASSIVE:
ier = CAN_IT_EPV;
irq_n = CAN1_IRQ_PASSIVE_IRQN;
vector = (uint32_t)&CAN1_IRQ_PASSIVE_VECT;
break;
case IRQ_BUS:
ier = CAN_IT_BOF;
irq_n = CAN1_IRQ_BUS_IRQN;
vector = (uint32_t)&CAN1_IRQ_BUS_VECT;
break;
default:
return;
}
}
#if defined(CAN2_BASE) && (CAN_NUM > 1)
else if ((CANName) can == CAN_2) {
switch (type) {
case IRQ_RX:
ier = CAN_IT_FMP0;
irq_n = CAN2_IRQ_RX_IRQN;
vector = (uint32_t)&CAN2_IRQ_RX_VECT;
break;
case IRQ_TX:
ier = CAN_IT_TME;
irq_n = CAN2_IRQ_TX_IRQN;
vector = (uint32_t)&CAN2_IRQ_TX_VECT;
break;
case IRQ_ERROR:
ier = CAN_IT_ERR;
irq_n = CAN2_IRQ_ERROR_IRQN;
vector = (uint32_t)&CAN2_IRQ_ERROR_VECT;
break;
case IRQ_PASSIVE:
ier = CAN_IT_EPV;
irq_n = CAN2_IRQ_PASSIVE_IRQN;
vector = (uint32_t)&CAN2_IRQ_PASSIVE_VECT;
break;
case IRQ_BUS:
ier = CAN_IT_BOF;
irq_n = CAN2_IRQ_BUS_IRQN;
vector = (uint32_t)&CAN2_IRQ_BUS_VECT;
break;
default:
return;
}
}
#endif
#if defined(CAN3_BASE) && (CAN_NUM > 2)
else if ((CANName) can == CAN_3) {
switch (type) {
case IRQ_RX:
ier = CAN_IT_FMP0;
irq_n = CAN3_IRQ_RX_IRQN;
vector = (uint32_t)&CAN3_IRQ_RX_VECT;
break;
case IRQ_TX:
ier = CAN_IT_TME;
irq_n = CAN3_IRQ_TX_IRQN;
vector = (uint32_t)&CAN3_IRQ_TX_VECT;
break;
case IRQ_ERROR:
ier = CAN_IT_ERR;
irq_n = CAN3_IRQ_ERROR_IRQN;
vector = (uint32_t)&CAN3_IRQ_ERROR_VECT;
break;
case IRQ_PASSIVE:
ier = CAN_IT_EPV;
irq_n = CAN3_IRQ_PASSIVE_IRQN;
vector = (uint32_t)&CAN3_IRQ_PASSIVE_VECT;
break;
case IRQ_BUS:
ier = CAN_IT_BOF;
irq_n = CAN3_IRQ_BUS_IRQN;
vector = (uint32_t)&CAN3_IRQ_BUS_VECT;
break;
default:
return;
}
}
#endif
else {
return;
}
if (enable) {
can->IER |= ier;
} else {
can->IER &= ~ier;
}
NVIC_SetVector(irq_n, vector);
NVIC_EnableIRQ(irq_n);
}
#endif /* FDCAN1 */
const PinMap *can_rd_pinmap()
{
return PinMap_CAN_TD;
}
const PinMap *can_td_pinmap()
{
return PinMap_CAN_RD;
}
#endif // DEVICE_CAN