/* mbed Microcontroller Library * Copyright (c) 2006-2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "can_api.h" #if DEVICE_CAN #ifdef FDCAN1 #include "pinmap.h" #include "PeripheralPins.h" #include "mbed_error.h" static uint32_t can_irq_ids[2] = {0}; static can_irq_handler irq_handler; /** Call all the init functions * * @returns * 0 if mode change failed or unsupported, * 1 if mode change was successful */ int can_internal_init(can_t *obj) { if (HAL_FDCAN_Init(&obj->CanHandle) != HAL_OK) { error("HAL_FDCAN_Init error\n"); } if (can_filter(obj, 0, 0, CANStandard, 0) == 0) { error("can_filter error\n"); } if (can_filter(obj, 0, 0, CANExtended, 0) == 0) { error("can_filter error\n"); } if (HAL_FDCAN_ConfigGlobalFilter(&obj->CanHandle, FDCAN_REJECT, FDCAN_REJECT, FDCAN_FILTER_REMOTE, FDCAN_FILTER_REMOTE) != HAL_OK) { error("HAL_FDCAN_ConfigGlobalFilter error\n"); } if (HAL_FDCAN_Start(&obj->CanHandle) != HAL_OK) { error("HAL_FDCAN_Start error\n"); } return 1; } void can_init(can_t *obj, PinName rd, PinName td) { /* default frequency is 100 kHz */ can_init_freq(obj, rd, td, 100000); } void can_init_freq(can_t *obj, PinName rd, PinName td, int hz) { CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD); CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD); CANName can = (CANName)pinmap_merge(can_rd, can_td); MBED_ASSERT((int)can != NC); __HAL_RCC_FDCAN_CLK_ENABLE(); if (can == CAN_1) { obj->index = 0; } #if defined(FDCAN2_BASE) else if (can == CAN_2) { obj->index = 1; } #endif else { error("can_init wrong instance\n"); return; } // Select PLL1Q as source of FDCAN clock RCC_PeriphCLKInitTypeDef RCC_PeriphClkInit; RCC_PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_FDCAN; RCC_PeriphClkInit.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL; // 10 MHz (RCC_OscInitStruct.PLL.PLLQ = 80) if (HAL_RCCEx_PeriphCLKConfig(&RCC_PeriphClkInit) != HAL_OK) { error("HAL_RCCEx_PeriphCLKConfig error\n"); } // Configure CAN pins pinmap_pinout(rd, PinMap_CAN_RD); pinmap_pinout(td, PinMap_CAN_TD); // Add pull-ups if (rd != NC) { pin_mode(rd, PullUp); } if (td != NC) { pin_mode(td, PullUp); } // Default values obj->CanHandle.Instance = (FDCAN_GlobalTypeDef *)can; /* Bit time parameter ex with 100 kHz requested frequency hz fdcan_ker_ck | 10 MHz | 10 MHz Prescaler | 1 | 1 Time_quantum (tq) | 100 ns | 100 ns Bit_rate | 0.1 MBit/s | Bit_length | 10 µs = 100 tq | = 10 000 000 / Synchronization_segment | 1 tq | 1 tq Phase_segment_1 | 69 tq | = * 0.75 Phase_segment_2 | 30 tq | = - 1 - Synchronization_Jump_width | 30 tq | = */ int ntq = 10000000 / hz; obj->CanHandle.Init.FrameFormat = FDCAN_FRAME_CLASSIC; obj->CanHandle.Init.Mode = FDCAN_MODE_NORMAL; obj->CanHandle.Init.AutoRetransmission = ENABLE; obj->CanHandle.Init.TransmitPause = DISABLE; obj->CanHandle.Init.ProtocolException = ENABLE; obj->CanHandle.Init.NominalPrescaler = 1; // Prescaler obj->CanHandle.Init.NominalTimeSeg1 = ntq * 0.75; // Phase_segment_1 obj->CanHandle.Init.NominalTimeSeg2 = ntq - 1 - obj->CanHandle.Init.NominalTimeSeg1; // Phase_segment_2 obj->CanHandle.Init.NominalSyncJumpWidth = obj->CanHandle.Init.NominalTimeSeg2; // Synchronization_Jump_width obj->CanHandle.Init.DataPrescaler = 0x1; // Not used - only in FDCAN obj->CanHandle.Init.DataSyncJumpWidth = 0x1; // Not used - only in FDCAN obj->CanHandle.Init.DataTimeSeg1 = 0x1; // Not used - only in FDCAN obj->CanHandle.Init.DataTimeSeg2 = 0x1; // Not used - only in FDCAN obj->CanHandle.Init.MessageRAMOffset = 0; obj->CanHandle.Init.StdFiltersNbr = 1; // to be aligned with the handle parameter in can_filter obj->CanHandle.Init.ExtFiltersNbr = 1; // to be aligned with the handle parameter in can_filter obj->CanHandle.Init.RxFifo0ElmtsNbr = 8; obj->CanHandle.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8; obj->CanHandle.Init.RxFifo1ElmtsNbr = 0; obj->CanHandle.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8; obj->CanHandle.Init.RxBuffersNbr = 0; obj->CanHandle.Init.RxBufferSize = FDCAN_DATA_BYTES_8; obj->CanHandle.Init.TxEventsNbr = 3; obj->CanHandle.Init.TxBuffersNbr = 0; obj->CanHandle.Init.TxFifoQueueElmtsNbr = 3; obj->CanHandle.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; obj->CanHandle.Init.TxElmtSize = FDCAN_DATA_BYTES_8; can_internal_init(obj); } void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) { irq_handler = handler; can_irq_ids[obj->index] = id; } void can_irq_free(can_t *obj) { CANName can = (CANName)obj->CanHandle.Instance; if (can == CAN_1) { HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn); HAL_NVIC_DisableIRQ(FDCAN1_IT1_IRQn); } #if defined(FDCAN2_BASE) else if (can == CAN_2) { HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn); HAL_NVIC_DisableIRQ(FDCAN2_IT1_IRQn); } #endif else { return; } HAL_NVIC_DisableIRQ(FDCAN_CAL_IRQn); can_irq_ids[obj->index] = 0; } void can_free(can_t *obj) { __HAL_RCC_FDCAN_FORCE_RESET(); __HAL_RCC_FDCAN_RELEASE_RESET(); __HAL_RCC_FDCAN_CLK_DISABLE(); } /** Reset CAN interface. * * To use after error overflow. */ void can_reset(can_t *obj) { can_mode(obj, MODE_RESET); HAL_FDCAN_ResetTimeoutCounter(&obj->CanHandle); HAL_FDCAN_ResetTimestampCounter(&obj->CanHandle); } int can_frequency(can_t *obj, int f) { if (HAL_FDCAN_Stop(&obj->CanHandle) != HAL_OK) { error("HAL_FDCAN_Stop error\n"); } /* See can_init_freq function for calculation details */ int ntq = 10000000 / f; obj->CanHandle.Init.NominalTimeSeg1 = ntq * 0.75; // Phase_segment_1 obj->CanHandle.Init.NominalTimeSeg2 = ntq - 1 - obj->CanHandle.Init.NominalTimeSeg1; // Phase_segment_2 obj->CanHandle.Init.NominalSyncJumpWidth = obj->CanHandle.Init.NominalTimeSeg2; // Synchronization_Jump_width return can_internal_init(obj); } /** Filter out incoming messages * * @param obj CAN object * @param id the id to filter on * @param mask the mask applied to the id * @param format format to filter on * @param handle message filter handle (not supported yet) * * @returns * 0 if filter change failed or unsupported, * new filter handle if successful (not supported yet => returns 1) */ int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) { UNUSED(handle); // Not supported yet (seems to be a used in read function?) FDCAN_FilterTypeDef sFilterConfig = {0}; if (format == CANStandard) { sFilterConfig.IdType = FDCAN_STANDARD_ID; sFilterConfig.FilterIndex = 0; sFilterConfig.FilterType = FDCAN_FILTER_MASK; sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0; sFilterConfig.FilterID1 = id; sFilterConfig.FilterID2 = mask; } else if (format == CANExtended) { sFilterConfig.IdType = FDCAN_EXTENDED_ID; sFilterConfig.FilterIndex = 0; sFilterConfig.FilterType = FDCAN_FILTER_MASK; sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0; sFilterConfig.FilterID1 = id; sFilterConfig.FilterID2 = mask; } else { // Filter for CANAny format cannot be configured for STM32 return 0; } if (HAL_FDCAN_ConfigFilter(&obj->CanHandle, &sFilterConfig) != HAL_OK) { return 0; } return 1; } int can_write(can_t *obj, CAN_Message msg, int cc) { FDCAN_TxHeaderTypeDef TxHeader = {0}; UNUSED(cc); // Configure Tx buffer message TxHeader.Identifier = msg.id; if (msg.format == CANStandard) { TxHeader.IdType = FDCAN_STANDARD_ID; } else { TxHeader.IdType = FDCAN_EXTENDED_ID; } TxHeader.TxFrameType = FDCAN_DATA_FRAME; TxHeader.DataLength = msg.len << 16; TxHeader.ErrorStateIndicator = FDCAN_ESI_ACTIVE; TxHeader.BitRateSwitch = FDCAN_BRS_OFF; TxHeader.FDFormat = FDCAN_CLASSIC_CAN; TxHeader.TxEventFifoControl = FDCAN_STORE_TX_EVENTS; TxHeader.MessageMarker = 0; if (HAL_FDCAN_AddMessageToTxFifoQ(&obj->CanHandle, &TxHeader, msg.data) != HAL_OK) { // Note for debug: you can get the error code calling HAL_FDCAN_GetError(&obj->CanHandle) return 0; } return 1; } int can_read(can_t *obj, CAN_Message *msg, int handle) { UNUSED(handle); // Not supported yet (seems to be a handle to a filter configuration?) if (HAL_FDCAN_GetRxFifoFillLevel(&obj->CanHandle, FDCAN_RX_FIFO0) == 0) { return 0; // No message arrived } FDCAN_RxHeaderTypeDef RxHeader = {0}; if (HAL_FDCAN_GetRxMessage(&obj->CanHandle, FDCAN_RX_FIFO0, &RxHeader, msg->data) != HAL_OK) { error("HAL_FDCAN_GetRxMessage error\n"); // Should not occur as previous HAL_FDCAN_GetRxFifoFillLevel call reported some data return 0; } if (RxHeader.IdType == FDCAN_STANDARD_ID) { msg->format = CANStandard; } else { msg->format = CANExtended; } msg->id = RxHeader.Identifier; msg->type = CANData; msg->len = RxHeader.DataLength >> 16; // see FDCAN_data_length_code value return 1; } unsigned char can_rderror(can_t *obj) { FDCAN_ErrorCountersTypeDef ErrorCounters; HAL_FDCAN_GetErrorCounters(&obj->CanHandle, &ErrorCounters); return (unsigned char)ErrorCounters.RxErrorCnt; } unsigned char can_tderror(can_t *obj) { FDCAN_ErrorCountersTypeDef ErrorCounters; HAL_FDCAN_GetErrorCounters(&obj->CanHandle, &ErrorCounters); return (unsigned char)ErrorCounters.TxErrorCnt; } void can_monitor(can_t *obj, int silent) { CanMode mode = MODE_NORMAL; if (silent) { switch (obj->CanHandle.Init.Mode) { case FDCAN_MODE_INTERNAL_LOOPBACK: mode = MODE_TEST_SILENT; break; default: mode = MODE_SILENT; break; } } else { switch (obj->CanHandle.Init.Mode) { case FDCAN_MODE_INTERNAL_LOOPBACK: case FDCAN_MODE_EXTERNAL_LOOPBACK: mode = MODE_TEST_LOCAL; break; default: mode = MODE_NORMAL; break; } } can_mode(obj, mode); } /** Change CAN operation to the specified mode * * @param mode The new operation mode (MODE_RESET, MODE_NORMAL, MODE_SILENT, MODE_TEST_LOCAL, MODE_TEST_GLOBAL, MODE_TEST_SILENT) * * @returns * 0 if mode change failed or unsupported, * 1 if mode change was successful */ int can_mode(can_t *obj, CanMode mode) { if (HAL_FDCAN_Stop(&obj->CanHandle) != HAL_OK) { error("HAL_FDCAN_Stop error\n"); } switch (mode) { case MODE_RESET: break; case MODE_NORMAL: obj->CanHandle.Init.Mode = FDCAN_MODE_NORMAL; // obj->CanHandle.Init.NominalPrescaler = 100; // Prescaler break; case MODE_SILENT: // Bus Monitoring obj->CanHandle.Init.Mode = FDCAN_MODE_BUS_MONITORING; break; case MODE_TEST_GLOBAL: // External LoopBack case MODE_TEST_LOCAL: obj->CanHandle.Init.Mode = FDCAN_MODE_EXTERNAL_LOOPBACK; break; case MODE_TEST_SILENT: // Internal LoopBack obj->CanHandle.Init.Mode = FDCAN_MODE_INTERNAL_LOOPBACK; // obj->CanHandle.Init.NominalPrescaler = 1; // Prescaler break; default: return 0; } return can_internal_init(obj); } static void can_irq(CANName name, int id) { FDCAN_HandleTypeDef CanHandle; CanHandle.Instance = (FDCAN_GlobalTypeDef *)name; if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_TX_COMPLETE)) { if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_TX_COMPLETE)) { __HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_TX_COMPLETE); irq_handler(can_irq_ids[id], IRQ_TX); } } if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_RX_BUFFER_NEW_MESSAGE)) { if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_IT_RX_BUFFER_NEW_MESSAGE)) { __HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_IT_RX_BUFFER_NEW_MESSAGE); irq_handler(can_irq_ids[id], IRQ_RX); } } if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_ERROR_WARNING)) { if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_ERROR_WARNING)) { __HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_ERROR_WARNING); irq_handler(can_irq_ids[id], IRQ_ERROR); } } if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_ERROR_PASSIVE)) { if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_ERROR_PASSIVE)) { __HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_ERROR_PASSIVE); irq_handler(can_irq_ids[id], IRQ_PASSIVE); } } if (__HAL_FDCAN_GET_IT_SOURCE(&CanHandle, FDCAN_IT_BUS_OFF)) { if (__HAL_FDCAN_GET_FLAG(&CanHandle, FDCAN_FLAG_BUS_OFF)) { __HAL_FDCAN_CLEAR_FLAG(&CanHandle, FDCAN_FLAG_BUS_OFF); irq_handler(can_irq_ids[id], IRQ_BUS); } } } void FDCAN1_IT0_IRQHandler(void) { can_irq(CAN_1, 0); } void FDCAN1_IT1_IRQHandler(void) { can_irq(CAN_1, 0); } void FDCAN2_IT0_IRQHandler(void) { can_irq(CAN_2, 1); } void FDCAN2_IT1_IRQHandler(void) { can_irq(CAN_2, 1); } // TODO Add other interrupts ? void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) { uint32_t interrupts = 0; switch (type) { case IRQ_TX: interrupts = FDCAN_IT_TX_COMPLETE; break; case IRQ_RX: interrupts = FDCAN_IT_RX_BUFFER_NEW_MESSAGE; break; case IRQ_ERROR: interrupts = FDCAN_IT_ERROR_WARNING; break; case IRQ_PASSIVE: interrupts = FDCAN_IT_ERROR_PASSIVE; break; case IRQ_BUS: interrupts = FDCAN_IT_BUS_OFF; default: return; } if (enable) { HAL_FDCAN_ActivateNotification(&obj->CanHandle, interrupts, 0); } else { HAL_FDCAN_DeactivateNotification(&obj->CanHandle, interrupts); } NVIC_SetVector(FDCAN1_IT0_IRQn, (uint32_t)&FDCAN1_IT0_IRQHandler); NVIC_EnableIRQ(FDCAN1_IT0_IRQn); NVIC_SetVector(FDCAN1_IT1_IRQn, (uint32_t)&FDCAN1_IT1_IRQHandler); NVIC_EnableIRQ(FDCAN1_IT1_IRQn); #if defined(FDCAN2_BASE) NVIC_SetVector(FDCAN2_IT0_IRQn, (uint32_t)&FDCAN2_IT0_IRQHandler); NVIC_EnableIRQ(FDCAN2_IT0_IRQn); NVIC_SetVector(FDCAN2_IT1_IRQn, (uint32_t)&FDCAN2_IT1_IRQHandler); NVIC_EnableIRQ(FDCAN2_IT1_IRQn); #endif } #else /* FDCAN1 */ #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "mbed_error.h" #include "can_device.h" // Specific to STM32 serie #include #include #include static uint32_t can_irq_ids[CAN_NUM] = {0}; static can_irq_handler irq_handler; static void can_registers_init(can_t *obj) { if (HAL_CAN_Init(&obj->CanHandle) != HAL_OK) { error("Cannot initialize CAN"); } // Set initial CAN frequency to specified frequency if (can_frequency(obj, obj->hz) != 1) { error("Can frequency could not be set\n"); } } void can_init(can_t *obj, PinName rd, PinName td) { can_init_freq(obj, rd, td, 100000); } void can_init_freq(can_t *obj, PinName rd, PinName td, int hz) { CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD); CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD); CANName can = (CANName)pinmap_merge(can_rd, can_td); MBED_ASSERT((int)can != NC); if (can == CAN_1) { __HAL_RCC_CAN1_CLK_ENABLE(); obj->index = 0; } #if defined(CAN2_BASE) && (CAN_NUM > 1) else if (can == CAN_2) { __HAL_RCC_CAN1_CLK_ENABLE(); // needed to set filters __HAL_RCC_CAN2_CLK_ENABLE(); obj->index = 1; } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) else if (can == CAN_3) { __HAL_RCC_CAN3_CLK_ENABLE(); obj->index = 2; } #endif else { return; } // Configure the CAN pins pinmap_pinout(rd, PinMap_CAN_RD); pinmap_pinout(td, PinMap_CAN_TD); if (rd != NC) { pin_mode(rd, PullUp); } if (td != NC) { pin_mode(td, PullUp); } /* Use default values for rist init */ obj->CanHandle.Instance = (CAN_TypeDef *)can; obj->CanHandle.Init.TTCM = DISABLE; obj->CanHandle.Init.ABOM = DISABLE; obj->CanHandle.Init.AWUM = DISABLE; obj->CanHandle.Init.NART = DISABLE; obj->CanHandle.Init.RFLM = DISABLE; obj->CanHandle.Init.TXFP = DISABLE; obj->CanHandle.Init.Mode = CAN_MODE_NORMAL; obj->CanHandle.Init.SJW = CAN_SJW_1TQ; obj->CanHandle.Init.BS1 = CAN_BS1_6TQ; obj->CanHandle.Init.BS2 = CAN_BS2_8TQ; obj->CanHandle.Init.Prescaler = 2; /* Store frequency to be restored in case of reset */ obj->hz = hz; can_registers_init(obj); /* Bits 27:14 are available for dual CAN configuration and are reserved for single CAN configuration: */ #if defined(CAN3_BASE) && (CAN_NUM > 2) uint32_t filter_number = (can == CAN_1 || can == CAN_3) ? 0 : 14; #else uint32_t filter_number = (can == CAN_1) ? 0 : 14; #endif can_filter(obj, 0, 0, CANStandard, filter_number); } void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) { irq_handler = handler; can_irq_ids[obj->index] = id; } void can_irq_free(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; can->IER &= ~(CAN_IT_FMP0 | CAN_IT_FMP1 | CAN_IT_TME | \ CAN_IT_ERR | CAN_IT_EPV | CAN_IT_BOF); can_irq_ids[obj->index] = 0; } void can_free(can_t *obj) { CANName can = (CANName) obj->CanHandle.Instance; // Reset CAN and disable clock if (can == CAN_1) { __HAL_RCC_CAN1_FORCE_RESET(); __HAL_RCC_CAN1_RELEASE_RESET(); __HAL_RCC_CAN1_CLK_DISABLE(); } #if defined(CAN2_BASE) && (CAN_NUM > 1) if (can == CAN_2) { __HAL_RCC_CAN2_FORCE_RESET(); __HAL_RCC_CAN2_RELEASE_RESET(); __HAL_RCC_CAN2_CLK_DISABLE(); } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) if (can == CAN_3) { __HAL_RCC_CAN3_FORCE_RESET(); __HAL_RCC_CAN3_RELEASE_RESET(); __HAL_RCC_CAN3_CLK_DISABLE(); } #endif } // The following table is used to program bit_timing. It is an adjustment of the sample // point by synchronizing on the start-bit edge and resynchronizing on the following edges. // This table has the sampling points as close to 75% as possible (most commonly used). // The first value is TSEG1, the second TSEG2. static const int timing_pts[23][2] = { {0x0, 0x0}, // 2, 50% {0x1, 0x0}, // 3, 67% {0x2, 0x0}, // 4, 75% {0x3, 0x0}, // 5, 80% {0x3, 0x1}, // 6, 67% {0x4, 0x1}, // 7, 71% {0x5, 0x1}, // 8, 75% {0x6, 0x1}, // 9, 78% {0x6, 0x2}, // 10, 70% {0x7, 0x2}, // 11, 73% {0x8, 0x2}, // 12, 75% {0x9, 0x2}, // 13, 77% {0x9, 0x3}, // 14, 71% {0xA, 0x3}, // 15, 73% {0xB, 0x3}, // 16, 75% {0xC, 0x3}, // 17, 76% {0xD, 0x3}, // 18, 78% {0xD, 0x4}, // 19, 74% {0xE, 0x4}, // 20, 75% {0xF, 0x4}, // 21, 76% {0xF, 0x5}, // 22, 73% {0xF, 0x6}, // 23, 70% {0xF, 0x7}, // 24, 67% }; static unsigned int can_speed(unsigned int pclk, unsigned int cclk, unsigned char psjw) { uint32_t btr; uint16_t brp = 0; uint32_t calcbit; uint32_t bitwidth; int hit = 0; int bits; bitwidth = (pclk / cclk); brp = bitwidth / 0x18; while ((!hit) && (brp < bitwidth / 4)) { brp++; for (bits = 22; bits > 0; bits--) { calcbit = (bits + 3) * (brp + 1); if (calcbit == bitwidth) { hit = 1; break; } } } if (hit) { btr = ((timing_pts[bits][1] << CAN_BTR_TS2_Pos) & CAN_BTR_TS2) | ((timing_pts[bits][0] << CAN_BTR_TS1_Pos) & CAN_BTR_TS1) | ((psjw << CAN_BTR_SJW_Pos) & CAN_BTR_SJW) | ((brp << CAN_BTR_BRP_Pos) & CAN_BTR_BRP); } else { btr = 0xFFFFFFFF; } return btr; } int can_frequency(can_t *obj, int f) { int pclk = HAL_RCC_GetPCLK1Freq(); int btr = can_speed(pclk, (unsigned int)f, 1); CAN_TypeDef *can = obj->CanHandle.Instance; uint32_t tickstart = 0; int status = 1; if (btr > 0) { can->MCR |= CAN_MCR_INRQ ; /* Get tick */ tickstart = HAL_GetTick(); while ((can->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) { if ((HAL_GetTick() - tickstart) > 2) { status = 0; break; } } if (status != 0) { /* Do not erase all BTR registers (e.g. silent mode), only the * ones calculated in can_speed */ can->BTR &= ~(CAN_BTR_TS2 | CAN_BTR_TS1 | CAN_BTR_SJW | CAN_BTR_BRP); can->BTR |= btr; can->MCR &= ~(uint32_t)CAN_MCR_INRQ; /* Get tick */ tickstart = HAL_GetTick(); while ((can->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) { if ((HAL_GetTick() - tickstart) > 2) { status = 0; break; } } if (status == 0) { error("can ESR 0x%04" PRIx32 ".%04" PRIx32 " + timeout status %d", (can->ESR & 0xFFFF0000) >> 16, (can->ESR & 0xFFFF), status); } } else { error("can init request timeout\n"); } } else { status = 0; } return status; } int can_write(can_t *obj, CAN_Message msg, int cc) { uint32_t transmitmailbox = CAN_TXSTATUS_NOMAILBOX; CAN_TypeDef *can = obj->CanHandle.Instance; /* Select one empty transmit mailbox */ if ((can->TSR & CAN_TSR_TME0) == CAN_TSR_TME0) { transmitmailbox = 0; } else if ((can->TSR & CAN_TSR_TME1) == CAN_TSR_TME1) { transmitmailbox = 1; } else if ((can->TSR & CAN_TSR_TME2) == CAN_TSR_TME2) { transmitmailbox = 2; } else { return 0; } can->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ; if (!(msg.format)) { can->sTxMailBox[transmitmailbox].TIR |= ((msg.id << 21) | (msg.type << 1)); } else { can->sTxMailBox[transmitmailbox].TIR |= ((msg.id << 3) | CAN_ID_EXT | (msg.type << 1)); } /* Set up the DLC */ can->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0; can->sTxMailBox[transmitmailbox].TDTR |= (msg.len & (uint8_t)0x0000000F); /* Set up the data field */ can->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)msg.data[3] << 24) | ((uint32_t)msg.data[2] << 16) | ((uint32_t)msg.data[1] << 8) | ((uint32_t)msg.data[0])); can->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)msg.data[7] << 24) | ((uint32_t)msg.data[6] << 16) | ((uint32_t)msg.data[5] << 8) | ((uint32_t)msg.data[4])); /* Request transmission */ can->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ; return 1; } int can_read(can_t *obj, CAN_Message *msg, int handle) { //handle is the FIFO number CAN_TypeDef *can = obj->CanHandle.Instance; // check FPM0 which holds the pending message count in FIFO 0 // if no message is pending, return 0 if ((can->RF0R & CAN_RF0R_FMP0) == 0) { return 0; } /* Get the Id */ msg->format = (CANFormat)(((uint8_t)0x04 & can->sFIFOMailBox[handle].RIR) >> 2); if (!msg->format) { msg->id = (uint32_t)0x000007FF & (can->sFIFOMailBox[handle].RIR >> 21); } else { msg->id = (uint32_t)0x1FFFFFFF & (can->sFIFOMailBox[handle].RIR >> 3); } msg->type = (CANType)(((uint8_t)0x02 & can->sFIFOMailBox[handle].RIR) >> 1); /* Get the DLC */ msg->len = (uint8_t)0x0F & can->sFIFOMailBox[handle].RDTR; /* Get the FMI */ // msg->FMI = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDTR >> 8); /* Get the data field */ msg->data[0] = (uint8_t)0xFF & can->sFIFOMailBox[handle].RDLR; msg->data[1] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 8); msg->data[2] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 16); msg->data[3] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 24); msg->data[4] = (uint8_t)0xFF & can->sFIFOMailBox[handle].RDHR; msg->data[5] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 8); msg->data[6] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 16); msg->data[7] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 24); /* Release the FIFO */ if (handle == CAN_FIFO0) { /* Release FIFO0 */ can->RF0R |= CAN_RF0R_RFOM0; } else { /* FIFONumber == CAN_FIFO1 */ /* Release FIFO1 */ can->RF1R |= CAN_RF1R_RFOM1; } return 1; } void can_reset(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; /* Reset IP and delete errors */ can->MCR |= CAN_MCR_RESET; can->ESR = 0x0; /* restore registers state as saved in obj context */ can_registers_init(obj); } unsigned char can_rderror(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; return (can->ESR >> 24) & 0xFF; } unsigned char can_tderror(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; return (can->ESR >> 16) & 0xFF; } void can_monitor(can_t *obj, int silent) { CanMode mode = MODE_NORMAL; /* Update current state w/ or w/o silent */ if (silent) { switch (obj->CanHandle.Init.Mode) { case CAN_MODE_LOOPBACK: case CAN_MODE_SILENT_LOOPBACK: mode = MODE_TEST_SILENT; break; default: mode = MODE_SILENT; break; } } else { switch (obj->CanHandle.Init.Mode) { case CAN_MODE_LOOPBACK: case CAN_MODE_SILENT_LOOPBACK: mode = MODE_TEST_LOCAL; break; default: mode = MODE_NORMAL; break; } } can_mode(obj, mode); } int can_mode(can_t *obj, CanMode mode) { int success = 0; CAN_TypeDef *can = obj->CanHandle.Instance; can->MCR |= CAN_MCR_INRQ ; while ((can->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) { } switch (mode) { case MODE_NORMAL: obj->CanHandle.Init.Mode = CAN_MODE_NORMAL; can->BTR &= ~(CAN_BTR_SILM | CAN_BTR_LBKM); success = 1; break; case MODE_SILENT: obj->CanHandle.Init.Mode = CAN_MODE_SILENT; can->BTR |= CAN_BTR_SILM; can->BTR &= ~CAN_BTR_LBKM; success = 1; break; case MODE_TEST_GLOBAL: case MODE_TEST_LOCAL: obj->CanHandle.Init.Mode = CAN_MODE_LOOPBACK; can->BTR |= CAN_BTR_LBKM; can->BTR &= ~CAN_BTR_SILM; success = 1; break; case MODE_TEST_SILENT: obj->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK; can->BTR |= (CAN_BTR_SILM | CAN_BTR_LBKM); success = 1; break; default: success = 0; break; } can->MCR &= ~(uint32_t)CAN_MCR_INRQ; while ((can->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) { } return success; } int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) { // filter for CANAny format cannot be configured for STM32 if ((format == CANStandard) || (format == CANExtended)) { CAN_FilterConfTypeDef sFilterConfig; sFilterConfig.FilterNumber = handle; sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK; sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT; if (format == CANStandard) { sFilterConfig.FilterIdHigh = id << 5; sFilterConfig.FilterIdLow = 0x0; sFilterConfig.FilterMaskIdHigh = mask << 5; sFilterConfig.FilterMaskIdLow = 0x0; // allows both remote and data frames } else { // format == CANExtended sFilterConfig.FilterIdHigh = id >> 13; // EXTID[28:13] sFilterConfig.FilterIdLow = (0xFFFF & (id << 3)) | (1 << 2); // EXTID[12:0] + IDE sFilterConfig.FilterMaskIdHigh = mask >> 13; sFilterConfig.FilterMaskIdLow = (0xFFFF & (mask << 3)) | (1 << 2); } sFilterConfig.FilterFIFOAssignment = 0; sFilterConfig.FilterActivation = ENABLE; sFilterConfig.BankNumber = 14 + handle; HAL_CAN_ConfigFilter(&obj->CanHandle, &sFilterConfig); } return 1; } static void can_irq(CANName name, int id) { uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0; CAN_HandleTypeDef CanHandle; CanHandle.Instance = (CAN_TypeDef *)name; if (__HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_TME)) { tmp1 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_0); tmp2 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_1); tmp3 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_2); if (tmp1) { __HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP0); } if (tmp2) { __HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP1); } if (tmp3) { __HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP2); } if (tmp1 || tmp2 || tmp3) { irq_handler(can_irq_ids[id], IRQ_TX); } } tmp1 = __HAL_CAN_MSG_PENDING(&CanHandle, CAN_FIFO0); tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_FMP0); if ((tmp1 != 0) && tmp2) { irq_handler(can_irq_ids[id], IRQ_RX); } tmp1 = __HAL_CAN_GET_FLAG(&CanHandle, CAN_FLAG_EPV); tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_EPV); tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR); if (tmp1 && tmp2 && tmp3) { irq_handler(can_irq_ids[id], IRQ_PASSIVE); } tmp1 = __HAL_CAN_GET_FLAG(&CanHandle, CAN_FLAG_BOF); tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_BOF); tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR); if (tmp1 && tmp2 && tmp3) { irq_handler(can_irq_ids[id], IRQ_BUS); } tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR); if (tmp1 && tmp2 && tmp3) { irq_handler(can_irq_ids[id], IRQ_ERROR); } } #if defined(TARGET_STM32F0) void CAN_IRQHandler(void) { can_irq(CAN_1, 0); } #elif defined(TARGET_STM32F3) void CAN_RX0_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN_TX_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN_SCE_IRQHandler(void) { can_irq(CAN_1, 0); } #else void CAN1_RX0_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN1_TX_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN1_SCE_IRQHandler(void) { can_irq(CAN_1, 0); } #if defined(CAN2_BASE) && (CAN_NUM > 1) void CAN2_RX0_IRQHandler(void) { can_irq(CAN_2, 1); } void CAN2_TX_IRQHandler(void) { can_irq(CAN_2, 1); } void CAN2_SCE_IRQHandler(void) { can_irq(CAN_2, 1); } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) void CAN3_RX0_IRQHandler(void) { can_irq(CAN_3, 2); } void CAN3_TX_IRQHandler(void) { can_irq(CAN_3, 2); } void CAN3_SCE_IRQHandler(void) { can_irq(CAN_3, 2); } #endif #endif // else void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) { CAN_TypeDef *can = obj->CanHandle.Instance; IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; uint32_t ier; if ((CANName) can == CAN_1) { switch (type) { case IRQ_RX: ier = CAN_IT_FMP0; irq_n = CAN1_IRQ_RX_IRQN; vector = (uint32_t)&CAN1_IRQ_RX_VECT; break; case IRQ_TX: ier = CAN_IT_TME; irq_n = CAN1_IRQ_TX_IRQN; vector = (uint32_t)&CAN1_IRQ_TX_VECT; break; case IRQ_ERROR: ier = CAN_IT_ERR; irq_n = CAN1_IRQ_ERROR_IRQN; vector = (uint32_t)&CAN1_IRQ_ERROR_VECT; break; case IRQ_PASSIVE: ier = CAN_IT_EPV; irq_n = CAN1_IRQ_PASSIVE_IRQN; vector = (uint32_t)&CAN1_IRQ_PASSIVE_VECT; break; case IRQ_BUS: ier = CAN_IT_BOF; irq_n = CAN1_IRQ_BUS_IRQN; vector = (uint32_t)&CAN1_IRQ_BUS_VECT; break; default: return; } } #if defined(CAN2_BASE) && (CAN_NUM > 1) else if ((CANName) can == CAN_2) { switch (type) { case IRQ_RX: ier = CAN_IT_FMP0; irq_n = CAN2_IRQ_RX_IRQN; vector = (uint32_t)&CAN2_IRQ_RX_VECT; break; case IRQ_TX: ier = CAN_IT_TME; irq_n = CAN2_IRQ_TX_IRQN; vector = (uint32_t)&CAN2_IRQ_TX_VECT; break; case IRQ_ERROR: ier = CAN_IT_ERR; irq_n = CAN2_IRQ_ERROR_IRQN; vector = (uint32_t)&CAN2_IRQ_ERROR_VECT; break; case IRQ_PASSIVE: ier = CAN_IT_EPV; irq_n = CAN2_IRQ_PASSIVE_IRQN; vector = (uint32_t)&CAN2_IRQ_PASSIVE_VECT; break; case IRQ_BUS: ier = CAN_IT_BOF; irq_n = CAN2_IRQ_BUS_IRQN; vector = (uint32_t)&CAN2_IRQ_BUS_VECT; break; default: return; } } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) else if ((CANName) can == CAN_3) { switch (type) { case IRQ_RX: ier = CAN_IT_FMP0; irq_n = CAN3_IRQ_RX_IRQN; vector = (uint32_t)&CAN3_IRQ_RX_VECT; break; case IRQ_TX: ier = CAN_IT_TME; irq_n = CAN3_IRQ_TX_IRQN; vector = (uint32_t)&CAN3_IRQ_TX_VECT; break; case IRQ_ERROR: ier = CAN_IT_ERR; irq_n = CAN3_IRQ_ERROR_IRQN; vector = (uint32_t)&CAN3_IRQ_ERROR_VECT; break; case IRQ_PASSIVE: ier = CAN_IT_EPV; irq_n = CAN3_IRQ_PASSIVE_IRQN; vector = (uint32_t)&CAN3_IRQ_PASSIVE_VECT; break; case IRQ_BUS: ier = CAN_IT_BOF; irq_n = CAN3_IRQ_BUS_IRQN; vector = (uint32_t)&CAN3_IRQ_BUS_VECT; break; default: return; } } #endif else { return; } if (enable) { can->IER |= ier; } else { can->IER &= ~ier; } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } #endif /* FDCAN1 */ const PinMap *can_rd_pinmap() { return PinMap_CAN_TD; } const PinMap *can_td_pinmap() { return PinMap_CAN_RD; } #endif // DEVICE_CAN