mbed-os/TESTS/mbed_hal/rtc/main.cpp

261 lines
6.3 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if !DEVICE_RTC
#error [NOT_SUPPORTED] RTC API not supported for this target
#endif
#include "utest/utest.h"
#include "unity/unity.h"
#include "greentea-client/test_env.h"
#include "rtc_test.h"
#include "mbed.h"
#include "rtc_api.h"
using namespace utest::v1;
static const uint32_t WAIT_TIME = 4;
static const uint32_t WAIT_TOLERANCE = 1;
#define US_PER_SEC 1000000
#define ACCURACY_FACTOR 10
static const uint32_t DELAY_4S = 4;
static const uint32_t DELAY_10S = 10;
static const uint32_t RTC_TOLERANCE = 1;
static const uint32_t TOLERANCE_ACCURACY_US = (DELAY_10S *US_PER_SEC / ACCURACY_FACTOR);
#if DEVICE_LPTICKER
volatile bool expired;
void callback(void)
{
expired = true;
}
/* Auxiliary function to test if RTC continue counting in
* sleep and deep-sleep modes. */
void rtc_sleep_test_support(bool deepsleep_mode)
{
LowPowerTimeout timeout;
const uint32_t start = 100;
expired = false;
/*
* Since deepsleep() may shut down the UART peripheral, we wait for 10ms
* to allow for hardware serial buffers to completely flush.
* This should be replaced with a better function that checks if the
* hardware buffers are empty. However, such an API does not exist now,
* so we'll use the wait_ms() function for now.
*/
wait_ms(10);
rtc_init();
if (deepsleep_mode == false) {
sleep_manager_lock_deep_sleep();
}
rtc_write(start);
timeout.attach(callback, DELAY_4S);
TEST_ASSERT(sleep_manager_can_deep_sleep_test_check() == deepsleep_mode);
while (!expired) {
sleep();
}
const uint32_t stop = rtc_read();
TEST_ASSERT_UINT32_WITHIN(RTC_TOLERANCE, DELAY_4S, stop - start);
timeout.detach();
if (deepsleep_mode == false) {
sleep_manager_unlock_deep_sleep();
}
rtc_free();
}
#endif
/* Test that ::rtc_init can be called multiple times. */
void rtc_init_test()
{
for (int i = 0; i < 10; i++) {
rtc_init();
}
rtc_free();
}
#if DEVICE_LPTICKER
/** Test that the RTC keeps counting in the various sleep modes. */
void rtc_sleep_test()
{
/* Test sleep mode. */
rtc_sleep_test_support(false);
/* Test deep-sleep mode. */
rtc_sleep_test_support(true);
}
#endif
/* Test that the RTC keeps counting even after ::rtc_free has been called. */
void rtc_persist_test()
{
const uint32_t start = 100;
rtc_init();
rtc_write(start);
rtc_free();
wait(WAIT_TIME);
rtc_init();
const uint32_t stop = rtc_read();
const int enabled = rtc_isenabled();
rtc_free();
TEST_ASSERT_TRUE(enabled);
TEST_ASSERT_UINT32_WITHIN(WAIT_TOLERANCE, WAIT_TIME, stop - start);
}
/* Test time does not glitch backwards due to an incorrectly implemented ripple counter driver. */
void rtc_glitch_test()
{
const uint32_t start = 0xffffe;
rtc_init();
rtc_write(start);
uint32_t last = start;
while (last < start + 4) {
const uint32_t cur = rtc_read();
TEST_ASSERT(cur >= last);
last = cur;
}
rtc_free();
}
/* Test that the RTC correctly handles different time values. */
void rtc_range_test()
{
static const uint32_t starts[] = {
0x00000000,
0xEFFFFFFF,
0x00001000,
0x00010000,
};
rtc_init();
for (uint32_t i = 0; i < sizeof(starts) / sizeof(starts[0]); i++) {
const uint32_t start = starts[i];
rtc_write(start);
wait(WAIT_TIME);
const uint32_t stop = rtc_read();
TEST_ASSERT_UINT32_WITHIN(WAIT_TOLERANCE, WAIT_TIME, stop - start);
}
rtc_free();
}
/* Test that the RTC accuracy is at least 10%. */
void rtc_accuracy_test()
{
Timer timer1;
const uint32_t start = 100;
rtc_init();
rtc_write(start);
timer1.start();
while (rtc_read() < (start + DELAY_10S)) {
/* Just wait. */
}
timer1.stop();
/* RTC accuracy is at least 10%. */
TEST_ASSERT_INT32_WITHIN(TOLERANCE_ACCURACY_US, DELAY_10S * US_PER_SEC, timer1.read_us());
}
/* Test that ::rtc_write/::rtc_read functions provides availability to set/get RTC time. */
void rtc_write_read_test()
{
static const uint32_t rtc_init_val = 100;
rtc_init();
for (int i = 0; i < 3; i++) {
const uint32_t init_val = (rtc_init_val + i * rtc_init_val);
core_util_critical_section_enter();
rtc_write(init_val);
const uint32_t read_val = rtc_read();
core_util_critical_section_exit();
/* No tolerance is provided since we should have 1 second to
* execute this case after the RTC time is set.
*/
TEST_ASSERT_EQUAL_UINT32(init_val, read_val);
}
rtc_free();
}
/* Test that ::is_enabled function returns 1 if the RTC is counting and the time has been set. */
void rtc_enabled_test()
{
/* Since some platforms use RTC for low power timer RTC may be already enabled.
* Because of that we will only verify if rtc_isenabled() returns 1 in case when init is done
* and RTC time is set.
*/
rtc_init();
rtc_write(0);
TEST_ASSERT_EQUAL_INT(1, rtc_isenabled());
rtc_free();
}
Case cases[] = {
Case("RTC - init", rtc_init_test),
#if DEVICE_LPTICKER
Case("RTC - sleep", rtc_sleep_test),
#endif
Case("RTC - persist", rtc_persist_test),
Case("RTC - glitch", rtc_glitch_test),
Case("RTC - range", rtc_range_test),
Case("RTC - accuracy", rtc_accuracy_test),
Case("RTC - write/read", rtc_write_read_test),
Case("RTC - enabled", rtc_enabled_test),
};
utest::v1::status_t greentea_test_setup(const size_t number_of_cases)
{
GREENTEA_SETUP(60, "default_auto");
return greentea_test_setup_handler(number_of_cases);
}
Specification specification(greentea_test_setup, cases, greentea_test_teardown_handler);
int main()
{
Harness::run(specification);
}