/* mbed Microcontroller Library * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if !DEVICE_RTC #error [NOT_SUPPORTED] RTC API not supported for this target #endif #include "utest/utest.h" #include "unity/unity.h" #include "greentea-client/test_env.h" #include "rtc_test.h" #include "mbed.h" #include "rtc_api.h" using namespace utest::v1; static const uint32_t WAIT_TIME = 4; static const uint32_t WAIT_TOLERANCE = 1; #define US_PER_SEC 1000000 #define ACCURACY_FACTOR 10 static const uint32_t DELAY_4S = 4; static const uint32_t DELAY_10S = 10; static const uint32_t RTC_TOLERANCE = 1; static const uint32_t TOLERANCE_ACCURACY_US = (DELAY_10S *US_PER_SEC / ACCURACY_FACTOR); #if DEVICE_LPTICKER volatile bool expired; void callback(void) { expired = true; } /* Auxiliary function to test if RTC continue counting in * sleep and deep-sleep modes. */ void rtc_sleep_test_support(bool deepsleep_mode) { LowPowerTimeout timeout; const uint32_t start = 100; expired = false; /* * Since deepsleep() may shut down the UART peripheral, we wait for 10ms * to allow for hardware serial buffers to completely flush. * This should be replaced with a better function that checks if the * hardware buffers are empty. However, such an API does not exist now, * so we'll use the wait_ms() function for now. */ wait_ms(10); rtc_init(); if (deepsleep_mode == false) { sleep_manager_lock_deep_sleep(); } rtc_write(start); timeout.attach(callback, DELAY_4S); TEST_ASSERT(sleep_manager_can_deep_sleep_test_check() == deepsleep_mode); while (!expired) { sleep(); } const uint32_t stop = rtc_read(); TEST_ASSERT_UINT32_WITHIN(RTC_TOLERANCE, DELAY_4S, stop - start); timeout.detach(); if (deepsleep_mode == false) { sleep_manager_unlock_deep_sleep(); } rtc_free(); } #endif /* Test that ::rtc_init can be called multiple times. */ void rtc_init_test() { for (int i = 0; i < 10; i++) { rtc_init(); } rtc_free(); } #if DEVICE_LPTICKER /** Test that the RTC keeps counting in the various sleep modes. */ void rtc_sleep_test() { /* Test sleep mode. */ rtc_sleep_test_support(false); /* Test deep-sleep mode. */ rtc_sleep_test_support(true); } #endif /* Test that the RTC keeps counting even after ::rtc_free has been called. */ void rtc_persist_test() { const uint32_t start = 100; rtc_init(); rtc_write(start); rtc_free(); wait(WAIT_TIME); rtc_init(); const uint32_t stop = rtc_read(); const int enabled = rtc_isenabled(); rtc_free(); TEST_ASSERT_TRUE(enabled); TEST_ASSERT_UINT32_WITHIN(WAIT_TOLERANCE, WAIT_TIME, stop - start); } /* Test time does not glitch backwards due to an incorrectly implemented ripple counter driver. */ void rtc_glitch_test() { const uint32_t start = 0xffffe; rtc_init(); rtc_write(start); uint32_t last = start; while (last < start + 4) { const uint32_t cur = rtc_read(); TEST_ASSERT(cur >= last); last = cur; } rtc_free(); } /* Test that the RTC correctly handles different time values. */ void rtc_range_test() { static const uint32_t starts[] = { 0x00000000, 0xEFFFFFFF, 0x00001000, 0x00010000, }; rtc_init(); for (uint32_t i = 0; i < sizeof(starts) / sizeof(starts[0]); i++) { const uint32_t start = starts[i]; rtc_write(start); wait(WAIT_TIME); const uint32_t stop = rtc_read(); TEST_ASSERT_UINT32_WITHIN(WAIT_TOLERANCE, WAIT_TIME, stop - start); } rtc_free(); } /* Test that the RTC accuracy is at least 10%. */ void rtc_accuracy_test() { Timer timer1; const uint32_t start = 100; rtc_init(); rtc_write(start); timer1.start(); while (rtc_read() < (start + DELAY_10S)) { /* Just wait. */ } timer1.stop(); /* RTC accuracy is at least 10%. */ TEST_ASSERT_INT32_WITHIN(TOLERANCE_ACCURACY_US, DELAY_10S * US_PER_SEC, timer1.read_us()); } /* Test that ::rtc_write/::rtc_read functions provides availability to set/get RTC time. */ void rtc_write_read_test() { static const uint32_t rtc_init_val = 100; rtc_init(); for (int i = 0; i < 3; i++) { const uint32_t init_val = (rtc_init_val + i * rtc_init_val); core_util_critical_section_enter(); rtc_write(init_val); const uint32_t read_val = rtc_read(); core_util_critical_section_exit(); /* No tolerance is provided since we should have 1 second to * execute this case after the RTC time is set. */ TEST_ASSERT_EQUAL_UINT32(init_val, read_val); } rtc_free(); } /* Test that ::is_enabled function returns 1 if the RTC is counting and the time has been set. */ void rtc_enabled_test() { /* Since some platforms use RTC for low power timer RTC may be already enabled. * Because of that we will only verify if rtc_isenabled() returns 1 in case when init is done * and RTC time is set. */ rtc_init(); rtc_write(0); TEST_ASSERT_EQUAL_INT(1, rtc_isenabled()); rtc_free(); } Case cases[] = { Case("RTC - init", rtc_init_test), #if DEVICE_LPTICKER Case("RTC - sleep", rtc_sleep_test), #endif Case("RTC - persist", rtc_persist_test), Case("RTC - glitch", rtc_glitch_test), Case("RTC - range", rtc_range_test), Case("RTC - accuracy", rtc_accuracy_test), Case("RTC - write/read", rtc_write_read_test), Case("RTC - enabled", rtc_enabled_test), }; utest::v1::status_t greentea_test_setup(const size_t number_of_cases) { GREENTEA_SETUP(60, "default_auto"); return greentea_test_setup_handler(number_of_cases); } Specification specification(greentea_test_setup, cases, greentea_test_teardown_handler); int main() { Harness::run(specification); }