mirror of https://github.com/ARMmbed/mbed-os.git
2327 lines
74 KiB
C
2327 lines
74 KiB
C
/* mbed Microcontroller Library
|
|
*******************************************************************************
|
|
* Copyright (c) 2015-2021, STMicroelectronics
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*******************************************************************************
|
|
*/
|
|
|
|
|
|
#include "mbed_assert.h"
|
|
#include "i2c_api.h"
|
|
#include "platform/mbed_wait_api.h"
|
|
|
|
#if DEVICE_I2C
|
|
|
|
#include <string.h>
|
|
#include "cmsis.h"
|
|
#include "pinmap.h"
|
|
#include "PeripheralPins.h"
|
|
#include "i2c_device.h" // family specific defines
|
|
#include "mbed_error.h"
|
|
#include "platform/mbed_power_mgmt.h"
|
|
|
|
#if MBED_CONF_TARGET_I2C_TIMING_VALUE_ALGO
|
|
/** @defgroup I2C_DEVICE_Private_Constants I2C_DEVICE Private Constants
|
|
* @{
|
|
*/
|
|
#ifndef I2C_VALID_TIMING_NBR
|
|
#define I2C_VALID_TIMING_NBR 128U
|
|
#endif
|
|
#define I2C_SPEED_FREQ_STANDARD 0U /* 100 kHz */
|
|
#define I2C_SPEED_FREQ_FAST 1U /* 400 kHz */
|
|
#define I2C_SPEED_FREQ_FAST_PLUS 2U /* 1 MHz */
|
|
#define I2C_ANALOG_FILTER_DELAY_MIN 50U /* ns */
|
|
#define I2C_ANALOG_FILTER_DELAY_MAX 260U /* ns */
|
|
#define I2C_USE_ANALOG_FILTER 1U
|
|
#define I2C_DIGITAL_FILTER_COEF 0U
|
|
#define I2C_PRESC_MAX 16U
|
|
#define I2C_SCLDEL_MAX 16U
|
|
#define I2C_SDADEL_MAX 16U
|
|
#define I2C_SCLH_MAX 256U
|
|
#define I2C_SCLL_MAX 256U
|
|
#define SEC2NSEC 1000000000UL
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
/** @defgroup I2C_DEVICE_Private_Types I2C_DEVICE Private Types
|
|
* @{
|
|
*/
|
|
typedef struct {
|
|
uint32_t freq; /* Frequency in Hz */
|
|
uint32_t freq_min; /* Minimum frequency in Hz */
|
|
uint32_t freq_max; /* Maximum frequency in Hz */
|
|
uint32_t hddat_min; /* Minimum data hold time in ns */
|
|
uint32_t vddat_max; /* Maximum data valid time in ns */
|
|
uint32_t sudat_min; /* Minimum data setup time in ns */
|
|
uint32_t lscl_min; /* Minimum low period of the SCL clock in ns */
|
|
uint32_t hscl_min; /* Minimum high period of SCL clock in ns */
|
|
uint32_t trise; /* Rise time in ns */
|
|
uint32_t tfall; /* Fall time in ns */
|
|
uint32_t dnf; /* Digital noise filter coefficient */
|
|
} I2C_Charac_t;
|
|
|
|
typedef struct {
|
|
uint32_t presc; /* Timing prescaler */
|
|
uint32_t tscldel; /* SCL delay */
|
|
uint32_t tsdadel; /* SDA delay */
|
|
uint32_t sclh; /* SCL high period */
|
|
uint32_t scll; /* SCL low period */
|
|
} I2C_Timings_t;
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup I2C_DEVICE_Private_Constants I2C_DEVICE Private Constants
|
|
* @{
|
|
*/
|
|
static const I2C_Charac_t I2C_Charac[] = {
|
|
[I2C_SPEED_FREQ_STANDARD] =
|
|
{
|
|
.freq = 100000,
|
|
.freq_min = 80000,
|
|
.freq_max = 120000,
|
|
.hddat_min = 0,
|
|
.vddat_max = 3450,
|
|
.sudat_min = 250,
|
|
.lscl_min = 4700,
|
|
.hscl_min = 4000,
|
|
.trise = 640,
|
|
.tfall = 20,
|
|
.dnf = I2C_DIGITAL_FILTER_COEF,
|
|
},
|
|
[I2C_SPEED_FREQ_FAST] =
|
|
{
|
|
.freq = 400000,
|
|
.freq_min = 320000,
|
|
.freq_max = 480000,
|
|
.hddat_min = 0,
|
|
.vddat_max = 900,
|
|
.sudat_min = 100,
|
|
.lscl_min = 1300,
|
|
.hscl_min = 600,
|
|
.trise = 250,
|
|
.tfall = 100,
|
|
.dnf = I2C_DIGITAL_FILTER_COEF,
|
|
},
|
|
[I2C_SPEED_FREQ_FAST_PLUS] =
|
|
{
|
|
.freq = 1000000,
|
|
.freq_min = 800000,
|
|
.freq_max = 1200000,
|
|
.hddat_min = 0,
|
|
.vddat_max = 450,
|
|
.sudat_min = 50,
|
|
.lscl_min = 500,
|
|
.hscl_min = 260,
|
|
.trise = 60,
|
|
.tfall = 100,
|
|
.dnf = I2C_DIGITAL_FILTER_COEF,
|
|
},
|
|
};
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup I2C_DEVICE_Private_Variables I2C_DEVICE Private Variables
|
|
* @{
|
|
*/
|
|
static I2C_Timings_t I2c_valid_timing[I2C_VALID_TIMING_NBR];
|
|
static uint32_t I2c_valid_timing_nbr = 0;
|
|
#endif // MBED_CONF_TARGET_I2C_TIMING_VALUE_ALGO
|
|
|
|
#ifndef DEBUG_STDIO
|
|
# define DEBUG_STDIO 0
|
|
#endif
|
|
|
|
#if DEBUG_STDIO
|
|
# include <stdio.h>
|
|
# define DEBUG_PRINTF(...) do { printf(__VA_ARGS__); } while(0)
|
|
#else
|
|
# define DEBUG_PRINTF(...) {}
|
|
#endif
|
|
|
|
#if DEVICE_I2C_ASYNCH
|
|
#define I2C_S(obj) (struct i2c_s *) (&((obj)->i2c))
|
|
#else
|
|
#define I2C_S(obj) (struct i2c_s *) (obj)
|
|
#endif
|
|
|
|
/* Family specific description for I2C */
|
|
#define I2C_NUM (5)
|
|
static I2C_HandleTypeDef *i2c_handles[I2C_NUM];
|
|
|
|
/* Timeout values are based on core clock and I2C clock.
|
|
The BYTE_TIMEOUT is computed as twice the number of cycles it would
|
|
take to send 10 bits over I2C. Most Flags should take less than that.
|
|
This is for immediate FLAG or ACK check.
|
|
*/
|
|
#define BYTE_TIMEOUT ((SystemCoreClock / obj_s->hz) * 2 * 10)
|
|
/* Timeout values based on I2C clock.
|
|
The BYTE_TIMEOUT_US is computed as 3x the time in us it would
|
|
take to send 10 bits over I2C. Most Flags should take less than that.
|
|
This is for complete transfers check.
|
|
*/
|
|
#define BYTE_TIMEOUT_US ((SystemCoreClock / obj_s->hz) * 3 * 10)
|
|
/* Timeout values for flags and events waiting loops. These timeouts are
|
|
not based on accurate values, they just guarantee that the application will
|
|
not remain stuck if the I2C communication is corrupted.
|
|
*/
|
|
#ifdef TARGET_STM32H7
|
|
#define FLAG_TIMEOUT ((int)0x1100)
|
|
#else
|
|
#define FLAG_TIMEOUT ((int)0x1000)
|
|
#endif
|
|
|
|
#ifdef I2C_IP_VERSION_V1
|
|
#define I2C_STATE_NONE ((uint32_t)(HAL_I2C_MODE_NONE))
|
|
#endif
|
|
|
|
#define SLAVE_MODE_RECEIVE 1
|
|
#define SLAVE_MODE_LISTEN 2
|
|
#define DEFAULT_SLAVE_MODE SLAVE_MODE_LISTEN
|
|
|
|
/* Declare i2c_init_internal to be used in this file */
|
|
void i2c_init_internal(i2c_t *obj, const i2c_pinmap_t *pinmap);
|
|
|
|
/* GENERIC INIT and HELPERS FUNCTIONS */
|
|
|
|
#if defined(I2C1_BASE)
|
|
static void i2c1_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[0];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(I2C2_BASE)
|
|
static void i2c2_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[1];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(I2C3_BASE)
|
|
static void i2c3_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[2];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(I2C4_BASE)
|
|
static void i2c4_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[3];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(I2C5_BASE) // STM32H7
|
|
static void i2c5_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[4];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
#if defined(FMPI2C1_BASE) // STM32F4
|
|
static void i2c5_irq(void)
|
|
{
|
|
I2C_HandleTypeDef *handle = i2c_handles[4];
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
}
|
|
#endif
|
|
|
|
void i2c_ev_err_enable(i2c_t *obj, uint32_t handler)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
IRQn_Type irq_event_n = obj_s->event_i2cIRQ;
|
|
IRQn_Type irq_error_n = obj_s->error_i2cIRQ;
|
|
/* default prio in master case is set to 2 */
|
|
uint32_t prio = 2;
|
|
|
|
/* Set up ITs using IRQ and handler tables */
|
|
NVIC_SetVector(irq_event_n, handler);
|
|
NVIC_SetVector(irq_error_n, handler);
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
/* Set higher priority to slave device than master.
|
|
* In case a device makes use of both master and slave, the
|
|
* slave needs higher responsiveness.
|
|
*/
|
|
if (obj_s->slave) {
|
|
prio = 1;
|
|
}
|
|
#endif
|
|
|
|
NVIC_SetPriority(irq_event_n, prio);
|
|
NVIC_SetPriority(irq_error_n, prio);
|
|
NVIC_EnableIRQ(irq_event_n);
|
|
NVIC_EnableIRQ(irq_error_n);
|
|
}
|
|
|
|
void i2c_ev_err_disable(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
IRQn_Type irq_event_n = obj_s->event_i2cIRQ;
|
|
IRQn_Type irq_error_n = obj_s->error_i2cIRQ;
|
|
|
|
HAL_NVIC_DisableIRQ(irq_event_n);
|
|
HAL_NVIC_DisableIRQ(irq_error_n);
|
|
}
|
|
|
|
uint32_t i2c_get_irq_handler(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
uint32_t handler = 0;
|
|
|
|
switch (obj_s->index) {
|
|
#if defined(I2C1_BASE)
|
|
case 0:
|
|
handler = (uint32_t)&i2c1_irq;
|
|
break;
|
|
#endif
|
|
#if defined(I2C2_BASE)
|
|
case 1:
|
|
handler = (uint32_t)&i2c2_irq;
|
|
break;
|
|
#endif
|
|
#if defined(I2C3_BASE)
|
|
case 2:
|
|
handler = (uint32_t)&i2c3_irq;
|
|
break;
|
|
#endif
|
|
#if defined(I2C4_BASE)
|
|
case 3:
|
|
handler = (uint32_t)&i2c4_irq;
|
|
break;
|
|
#endif
|
|
#if defined(I2C5_BASE)
|
|
case 4:
|
|
handler = (uint32_t)&i2c5_irq;
|
|
break;
|
|
#endif
|
|
#if defined(FMPI2C1_BASE)
|
|
case 4:
|
|
handler = (uint32_t)&i2c5_irq;
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
i2c_handles[obj_s->index] = handle;
|
|
return handler;
|
|
}
|
|
|
|
void i2c_hw_reset(i2c_t *obj)
|
|
{
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
handle->Instance = (I2C_TypeDef *)(obj_s->i2c);
|
|
|
|
// wait before reset
|
|
timeout = BYTE_TIMEOUT;
|
|
while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BUSY)) && (--timeout != 0));
|
|
#if defined(DUAL_CORE) && (TARGET_STM32H7)
|
|
while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID)) {
|
|
}
|
|
#endif /* DUAL_CORE */
|
|
#if defined I2C1_BASE
|
|
if (obj_s->i2c == I2C_1) {
|
|
__HAL_RCC_I2C1_FORCE_RESET();
|
|
__HAL_RCC_I2C1_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined I2C2_BASE
|
|
if (obj_s->i2c == I2C_2) {
|
|
__HAL_RCC_I2C2_FORCE_RESET();
|
|
__HAL_RCC_I2C2_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined I2C3_BASE
|
|
if (obj_s->i2c == I2C_3) {
|
|
__HAL_RCC_I2C3_FORCE_RESET();
|
|
__HAL_RCC_I2C3_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined I2C4_BASE
|
|
if (obj_s->i2c == I2C_4) {
|
|
__HAL_RCC_I2C4_FORCE_RESET();
|
|
__HAL_RCC_I2C4_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined I2C5_BASE
|
|
if (obj_s->i2c == I2C_5) {
|
|
__HAL_RCC_I2C5_FORCE_RESET();
|
|
__HAL_RCC_I2C5_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined FMPI2C1_BASE
|
|
if (obj_s->i2c == FMPI2C_1) {
|
|
__HAL_RCC_FMPI2C1_FORCE_RESET();
|
|
__HAL_RCC_FMPI2C1_RELEASE_RESET();
|
|
}
|
|
#endif
|
|
#if defined(DUAL_CORE) && (TARGET_STM32H7)
|
|
LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, HSEM_CR_COREID_CURRENT);
|
|
#endif /* DUAL_CORE */
|
|
}
|
|
|
|
void i2c_sw_reset(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
/* SW reset procedure:
|
|
* PE must be kept low during at least 3 APB clock cycles
|
|
* in order to perform the software reset.
|
|
* This is ensured by writing the following software sequence:
|
|
* - Write PE=0
|
|
* - Check PE=0
|
|
* - Write PE=1.
|
|
*/
|
|
handle->Instance->CR1 &= ~I2C_CR1_PE;
|
|
while (handle->Instance->CR1 & I2C_CR1_PE);
|
|
handle->Instance->CR1 |= I2C_CR1_PE;
|
|
}
|
|
|
|
void i2c_init_internal(i2c_t *obj, const i2c_pinmap_t *pinmap)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
#ifdef I2C_IP_VERSION_V2
|
|
/* These variables are initialized with 0, to overcome possiblity of
|
|
garbage assignment */
|
|
obj_s->current_hz = 0;
|
|
obj_s->handle.Init.Timing = 0;
|
|
#endif
|
|
|
|
/* Determine the I2C to use */
|
|
if (pinmap != NULL) {
|
|
obj_s->sda = pinmap->sda_pin;
|
|
obj_s->scl = pinmap->scl_pin;
|
|
#if STATIC_PINMAP_READY
|
|
obj_s->sda_func = pinmap->sda_function;
|
|
obj_s->scl_func = pinmap->scl_function;
|
|
#endif
|
|
obj_s->i2c = (I2CName)pinmap->peripheral;
|
|
MBED_ASSERT(obj_s->i2c != (I2CName)NC);
|
|
}
|
|
|
|
#if defined I2C1_BASE
|
|
// Enable I2C1 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_1) {
|
|
obj_s->index = 0;
|
|
__HAL_RCC_I2C1_CLK_ENABLE();
|
|
// Configure I2C pins
|
|
obj_s->event_i2cIRQ = I2C1_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C1_ER_IRQn;
|
|
|
|
#if defined(TARGET_STM32WL) || defined(TARGET_STM32WB)
|
|
/* In Stop2 mode, I2C1 and I2C2 instances are powered down (only I2C3 register content is kept) */
|
|
sleep_manager_lock_deep_sleep();
|
|
#endif
|
|
}
|
|
#endif
|
|
#if defined I2C2_BASE
|
|
// Enable I2C2 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_2) {
|
|
obj_s->index = 1;
|
|
__HAL_RCC_I2C2_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = I2C2_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C2_ER_IRQn;
|
|
|
|
#if defined(TARGET_STM32WL)
|
|
/* In Stop2 mode, I2C1 and I2C2 instances are powered down (only I2C3 register content is kept) */
|
|
sleep_manager_lock_deep_sleep();
|
|
#endif
|
|
}
|
|
#endif
|
|
#if defined I2C3_BASE
|
|
// Enable I2C3 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_3) {
|
|
obj_s->index = 2;
|
|
__HAL_RCC_I2C3_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = I2C3_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C3_ER_IRQn;
|
|
}
|
|
#endif
|
|
#if defined I2C4_BASE
|
|
// Enable I2C4 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_4) {
|
|
obj_s->index = 3;
|
|
__HAL_RCC_I2C4_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = I2C4_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C4_ER_IRQn;
|
|
}
|
|
#endif
|
|
#if defined I2C5_BASE
|
|
// Enable I2C5 clock and pinout if not done
|
|
if (obj_s->i2c == I2C_5) {
|
|
obj_s->index = 4;
|
|
__HAL_RCC_I2C5_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = I2C5_EV_IRQn;
|
|
obj_s->error_i2cIRQ = I2C5_ER_IRQn;
|
|
}
|
|
#endif
|
|
#if defined FMPI2C1_BASE
|
|
// Enable I2C3 clock and pinout if not done
|
|
if (obj_s->i2c == FMPI2C_1) {
|
|
obj_s->index = 4;
|
|
__HAL_RCC_FMPI2C1_CLK_ENABLE();
|
|
obj_s->event_i2cIRQ = FMPI2C1_EV_IRQn;
|
|
obj_s->error_i2cIRQ = FMPI2C1_ER_IRQn;
|
|
}
|
|
#endif
|
|
|
|
// Configure I2C pins
|
|
#if STATIC_PINMAP_READY
|
|
pin_function(obj_s->sda, obj_s->sda_func);
|
|
pin_function(obj_s->scl, obj_s->scl_func);
|
|
#else
|
|
pinmap_pinout(obj_s->sda, PinMap_I2C_SDA);
|
|
pinmap_pinout(obj_s->scl, PinMap_I2C_SCL);
|
|
#endif
|
|
pin_mode(obj_s->sda, OpenDrainNoPull);
|
|
pin_mode(obj_s->scl, OpenDrainNoPull);
|
|
|
|
// I2C configuration
|
|
// Default hz value used for timeout computation
|
|
if (!obj_s->hz) {
|
|
obj_s->hz = 100000; // 100 kHz per default
|
|
}
|
|
|
|
// Reset to clear pending flags if any
|
|
i2c_hw_reset(obj);
|
|
i2c_frequency(obj, obj_s->hz);
|
|
|
|
#ifdef I2C_IP_VERSION_V2
|
|
obj_s->current_hz = obj_s->hz;
|
|
#else
|
|
// I2C Xfer operation init
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
#endif
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
// I2C master by default
|
|
obj_s->slave = 0;
|
|
obj_s->pending_slave_tx_master_rx = 0;
|
|
obj_s->pending_slave_rx_maxter_tx = 0;
|
|
#endif
|
|
|
|
obj_s->event = 0;
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_IDLE);
|
|
}
|
|
|
|
void i2c_deinit_internal(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
i2c_hw_reset(obj);
|
|
|
|
HAL_I2C_DeInit(&(obj_s->handle));
|
|
|
|
#if defined I2C1_BASE
|
|
if (obj_s->i2c == I2C_1) {
|
|
__HAL_RCC_I2C1_CLK_DISABLE();
|
|
#if defined(TARGET_STM32WL) || defined(TARGET_STM32WB)
|
|
sleep_manager_unlock_deep_sleep();
|
|
#endif
|
|
}
|
|
#endif
|
|
#if defined I2C2_BASE
|
|
if (obj_s->i2c == I2C_2) {
|
|
__HAL_RCC_I2C2_CLK_DISABLE();
|
|
#if defined(TARGET_STM32WL)
|
|
sleep_manager_unlock_deep_sleep();
|
|
#endif
|
|
}
|
|
#endif
|
|
#if defined I2C3_BASE
|
|
if (obj_s->i2c == I2C_3) {
|
|
__HAL_RCC_I2C3_CLK_DISABLE();
|
|
}
|
|
#endif
|
|
#if defined I2C4_BASE
|
|
if (obj_s->i2c == I2C_4) {
|
|
__HAL_RCC_I2C4_CLK_DISABLE();
|
|
}
|
|
#endif
|
|
#if defined I2C5_BASE
|
|
if (obj_s->i2c == I2C_5) {
|
|
__HAL_RCC_I2C5_CLK_DISABLE();
|
|
}
|
|
#endif
|
|
#if defined FMPI2C1_BASE
|
|
if (obj_s->i2c == FMPI2C_1) {
|
|
__HAL_RCC_FMPI2C1_CLK_DISABLE();
|
|
}
|
|
#endif
|
|
|
|
pin_function(obj_s->sda, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
|
|
pin_function(obj_s->scl, STM_PIN_DATA(STM_MODE_ANALOG, GPIO_NOPULL, 0));
|
|
|
|
obj_s->sda = NC;
|
|
obj_s->scl = NC;
|
|
obj_s->i2c = (I2CName)NC;
|
|
}
|
|
|
|
#if STATIC_PINMAP_READY
|
|
#define I2C_INIT_DIRECT i2c_init_direct
|
|
void i2c_init_direct(i2c_t *obj, const i2c_pinmap_t *pinmap)
|
|
#else
|
|
#define I2C_INIT_DIRECT _i2c_init_direct
|
|
static void _i2c_init_direct(i2c_t *obj, const i2c_pinmap_t *pinmap)
|
|
#endif
|
|
{
|
|
memset(obj, 0, sizeof(*obj));
|
|
i2c_init_internal(obj, pinmap);
|
|
}
|
|
|
|
void i2c_init(i2c_t *obj, PinName sda, PinName scl)
|
|
{
|
|
uint32_t i2c_sda = pinmap_peripheral(sda, PinMap_I2C_SDA);
|
|
uint32_t i2c_scl = pinmap_peripheral(scl, PinMap_I2C_SCL);
|
|
|
|
int peripheral = (int)pinmap_merge(i2c_sda, i2c_scl);
|
|
|
|
int sda_function = (int)pinmap_find_function(sda, PinMap_I2C_SDA);
|
|
int scl_function = (int)pinmap_find_function(scl, PinMap_I2C_SCL);
|
|
|
|
const i2c_pinmap_t explicit_i2c_pinmap = {peripheral, sda, sda_function, scl, scl_function};
|
|
|
|
I2C_INIT_DIRECT(obj, &explicit_i2c_pinmap);
|
|
}
|
|
|
|
void i2c_free(i2c_t *obj)
|
|
{
|
|
i2c_deinit_internal(obj);
|
|
}
|
|
|
|
void i2c_frequency(i2c_t *obj, int hz)
|
|
{
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
// wait before init
|
|
timeout = BYTE_TIMEOUT;
|
|
while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BUSY)) && (--timeout != 0));
|
|
|
|
#ifdef I2C_IP_VERSION_V1
|
|
handle->Init.ClockSpeed = hz;
|
|
handle->Init.DutyCycle = I2C_DUTYCYCLE_2;
|
|
#endif
|
|
#ifdef I2C_IP_VERSION_V2
|
|
// Enable the Fast Mode Plus capability
|
|
if (hz == 1000000) {
|
|
#if defined(I2C1_BASE) && defined(I2C_FASTMODEPLUS_I2C1) // sometimes I2C_FASTMODEPLUS_I2Cx is define even if not supported by the chip
|
|
#if defined(SYSCFG_CFGR1_I2C_FMP_I2C1) || defined(SYSCFG_CFGR1_I2C1_FMP) || defined(SYSCFG_PMC_I2C1_FMP) || defined(SYSCFG_PMCR_I2C1_FMP) || defined(SYSCFG_CFGR2_I2C1_FMP)
|
|
if (obj_s->i2c == I2C_1) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C1);
|
|
}
|
|
#endif
|
|
#endif
|
|
#if defined(I2C2_BASE) && defined(I2C_FASTMODEPLUS_I2C2) // sometimes I2C_FASTMODEPLUS_I2Cx is define even if not supported by the chip
|
|
#if defined(SYSCFG_CFGR1_I2C_FMP_I2C2) || defined(SYSCFG_CFGR1_I2C2_FMP) || defined(SYSCFG_PMC_I2C2_FMP) || defined(SYSCFG_PMCR_I2C2_FMP) || defined(SYSCFG_CFGR2_I2C2_FMP)
|
|
if (obj_s->i2c == I2C_2) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C2);
|
|
}
|
|
#endif
|
|
#endif
|
|
#if defined(I2C3_BASE) && defined (I2C_FASTMODEPLUS_I2C3) // sometimes I2C_FASTMODEPLUS_I2Cx is define even if not supported by the chip
|
|
#if defined(SYSCFG_CFGR1_I2C_FMP_I2C3) || defined(SYSCFG_CFGR1_I2C3_FMP) || defined(SYSCFG_PMC_I2C3_FMP) || defined(SYSCFG_PMCR_I2C3_FMP) || defined(SYSCFG_CFGR2_I2C3_FMP)
|
|
if (obj_s->i2c == I2C_3) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C3);
|
|
}
|
|
#endif
|
|
#endif
|
|
#if defined(I2C4_BASE) && defined (I2C_FASTMODEPLUS_I2C4) // sometimes I2C_FASTMODEPLUS_I2Cx is define even if not supported by the chip
|
|
#if defined(SYSCFG_CFGR1_I2C_FMP_I2C4) || defined(SYSCFG_CFGR1_I2C4_FMP) || defined(SYSCFG_PMC_I2C4_FMP) || defined(SYSCFG_PMCR_I2C4_FMP) || defined(SYSCFG_CFGR2_I2C4_FMP)
|
|
if (obj_s->i2c == I2C_4) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C4);
|
|
}
|
|
#endif
|
|
#endif
|
|
#if defined(I2C5_BASE) && defined (I2C_FASTMODEPLUS_I2C5) // sometimes I2C_FASTMODEPLUS_I2Cx is define even if not supported by the chip
|
|
#if defined(SYSCFG_CFGR1_I2C_FMP_I2C5) || defined(SYSCFG_CFGR1_I2C5_FMP) || defined(SYSCFG_PMC_I2C5_FMP) || defined(SYSCFG_PMCR_I2C5_FMP) || defined(SYSCFG_CFGR2_I2C5_FMP)
|
|
if (obj_s->i2c == I2C_5) {
|
|
HAL_I2CEx_EnableFastModePlus(I2C_FASTMODEPLUS_I2C5);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif //I2C_IP_VERSION_V2
|
|
|
|
/*##-1- Configure the I2C clock source. The clock is derived from the SYSCLK #*/
|
|
#if defined(DUAL_CORE) && (TARGET_STM32H7)
|
|
while (LL_HSEM_1StepLock(HSEM, CFG_HW_RCC_SEMID)) {
|
|
}
|
|
#endif /* DUAL_CORE */
|
|
#if defined(I2C1_BASE) && defined (__HAL_RCC_I2C1_CONFIG)
|
|
if (obj_s->i2c == I2C_1) {
|
|
__HAL_RCC_I2C1_CONFIG(I2CAPI_I2C1_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(I2C2_BASE) && defined(__HAL_RCC_I2C2_CONFIG)
|
|
if (obj_s->i2c == I2C_2) {
|
|
__HAL_RCC_I2C2_CONFIG(I2CAPI_I2C2_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(I2C3_BASE) && defined(__HAL_RCC_I2C3_CONFIG)
|
|
if (obj_s->i2c == I2C_3) {
|
|
__HAL_RCC_I2C3_CONFIG(I2CAPI_I2C3_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(I2C4_BASE) && defined(__HAL_RCC_I2C4_CONFIG)
|
|
if (obj_s->i2c == I2C_4) {
|
|
__HAL_RCC_I2C4_CONFIG(I2CAPI_I2C4_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(I2C5_BASE) && defined(__HAL_RCC_I2C5_CONFIG)
|
|
if (obj_s->i2c == I2C_5) {
|
|
__HAL_RCC_I2C5_CONFIG(I2CAPI_I2C5_CLKSRC);
|
|
}
|
|
#endif
|
|
#if defined(DUAL_CORE) && (TARGET_STM32H7)
|
|
LL_HSEM_ReleaseLock(HSEM, CFG_HW_RCC_SEMID, HSEM_CR_COREID_CURRENT);
|
|
#endif /* DUAL_CORE */
|
|
|
|
#ifdef I2C_ANALOGFILTER_ENABLE
|
|
/* Enable the Analog I2C Filter */
|
|
HAL_I2CEx_ConfigAnalogFilter(handle, I2C_ANALOGFILTER_ENABLE);
|
|
#endif
|
|
|
|
#ifdef I2C_IP_VERSION_V2
|
|
/* Only predefined timing for below frequencies are supported */
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || (hz == 1000000));
|
|
|
|
/* Derives I2C timing value with respect to I2C input clock source speed
|
|
and I2C bus frequency requested. "Init.Timing" is passed to this function to
|
|
reduce multiple computation of timing value which there by reduces CPU load.
|
|
*/
|
|
handle->Init.Timing = i2c_get_timing(obj_s->i2c, handle->Init.Timing, \
|
|
obj_s->current_hz, hz);
|
|
/* Only non-zero timing value is supported */
|
|
MBED_ASSERT(handle->Init.Timing != 0);
|
|
|
|
/* hz value is stored for computing timing value next time */
|
|
obj_s->current_hz = hz;
|
|
#endif // I2C_IP_VERSION_V2
|
|
|
|
// I2C configuration
|
|
handle->Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
|
|
handle->Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
|
|
handle->Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
|
|
handle->Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
|
|
handle->Init.OwnAddress1 = 0;
|
|
handle->Init.OwnAddress2 = 0;
|
|
#ifdef I2C_IP_VERSION_V2
|
|
handle->Init.OwnAddress2Masks = I2C_OA2_NOMASK;
|
|
#endif
|
|
HAL_I2C_Init(handle);
|
|
|
|
/* store frequency for timeout computation */
|
|
obj_s->hz = hz;
|
|
}
|
|
|
|
i2c_t *get_i2c_obj(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Aim of the function is to get i2c_s pointer using hi2c pointer */
|
|
/* Highly inspired from magical linux kernel's "container_of" */
|
|
/* (which was not directly used since not compatible with IAR toolchain) */
|
|
struct i2c_s *obj_s;
|
|
i2c_t *obj;
|
|
|
|
obj_s = (struct i2c_s *)((char *)hi2c - offsetof(struct i2c_s, handle));
|
|
obj = (i2c_t *)((char *)obj_s - offsetof(i2c_t, i2c));
|
|
|
|
return (obj);
|
|
}
|
|
|
|
void i2c_reset(i2c_t *obj)
|
|
{
|
|
/* As recommended in i2c_api.h, mainly send stop */
|
|
i2c_stop(obj);
|
|
/* then re-init */
|
|
i2c_init_internal(obj, NULL);
|
|
}
|
|
|
|
/*
|
|
* UNITARY APIS.
|
|
* For very basic operations, direct registers access is needed
|
|
* There are 2 different IPs version that need to be supported
|
|
*/
|
|
#ifdef I2C_IP_VERSION_V1
|
|
int i2c_start(i2c_t *obj)
|
|
{
|
|
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
// Clear Acknowledge failure flag
|
|
__HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_AF);
|
|
|
|
// Wait the STOP condition has been previously correctly sent
|
|
// This timeout can be avoid in some specific cases by simply clearing the STOP bit
|
|
timeout = FLAG_TIMEOUT;
|
|
while ((handle->Instance->CR1 & I2C_CR1_STOP) == I2C_CR1_STOP) {
|
|
if ((timeout--) == 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Generate the START condition
|
|
handle->Instance->CR1 |= I2C_CR1_START;
|
|
|
|
// Wait the START condition has been correctly sent
|
|
timeout = FLAG_TIMEOUT;
|
|
while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_SB) == RESET) {
|
|
if ((timeout--) == 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i2c_stop(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_TypeDef *i2c = (I2C_TypeDef *)obj_s->i2c;
|
|
|
|
// Generate the STOP condition
|
|
i2c->CR1 |= I2C_CR1_STOP;
|
|
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
|
|
// Wait until condition is generated
|
|
int timeout = FLAG_TIMEOUT;
|
|
while (__HAL_I2C_GET_FLAG(&obj_s->handle, I2C_FLAG_BUSY)) {
|
|
if ((timeout--) == 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i2c_byte_read(i2c_t *obj, int last)
|
|
{
|
|
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
if (last) {
|
|
// Don't acknowledge the last byte
|
|
handle->Instance->CR1 &= ~I2C_CR1_ACK;
|
|
} else {
|
|
// Acknowledge the byte
|
|
handle->Instance->CR1 |= I2C_CR1_ACK;
|
|
}
|
|
|
|
// Wait until the byte is received
|
|
timeout = FLAG_TIMEOUT;
|
|
while (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_RXNE) == RESET) {
|
|
if ((timeout--) == 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return (int)handle->Instance->DR;
|
|
}
|
|
|
|
int i2c_byte_write(i2c_t *obj, int data)
|
|
{
|
|
|
|
int timeout;
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
handle->Instance->DR = (uint8_t)data;
|
|
|
|
// Wait until the byte (might be the address) is transmitted
|
|
timeout = FLAG_TIMEOUT;
|
|
while ((__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXE) == RESET) &&
|
|
(__HAL_I2C_GET_FLAG(handle, I2C_FLAG_BTF) == RESET) &&
|
|
(__HAL_I2C_GET_FLAG(handle, I2C_FLAG_ADDR) == RESET)) {
|
|
if ((timeout--) == 0) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
if (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_ADDR) != RESET) {
|
|
__HAL_I2C_CLEAR_ADDRFLAG(handle);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif //I2C_IP_VERSION_V1
|
|
#ifdef I2C_IP_VERSION_V2
|
|
|
|
/**
|
|
* Return whether the given state is a state where we can start a new I2C transaction with the
|
|
* STM32 HAL.
|
|
*/
|
|
bool i2c_is_ready_for_transaction_start(stm_i2c_state state)
|
|
{
|
|
// Note: We can safely send a transaction start in the middle of any single byte operation; this creates a
|
|
// repeated start.
|
|
|
|
return state == STM_I2C_IDLE || STM_I2C_PENDING_START == state
|
|
|| state == STM_I2C_SB_READ_IN_PROGRESS || state == STM_I2C_SB_WRITE_IN_PROGRESS;
|
|
}
|
|
|
|
/**
|
|
* If currently in a single-byte operation, special reset logic is needed to get the peripheral
|
|
* ready to repeated-start another transaction. This function performs those steps if they are needed.
|
|
*/
|
|
static void prep_for_restart_if_needed(struct i2c_s *obj_s) {
|
|
if (obj_s->state == STM_I2C_SB_READ_IN_PROGRESS || obj_s->state == STM_I2C_SB_WRITE_IN_PROGRESS) {
|
|
// Force an end to the current operation by setting bytes remaining to 0 and RELOAD to false.
|
|
// Without this, the I2C peripheral seems to refuse to send another start condition as it
|
|
// thinks the previous operation is still running.
|
|
uint32_t cr2_val = obj_s->handle.Instance->CR2;
|
|
cr2_val &= ~(I2C_CR2_RELOAD_Msk);
|
|
cr2_val &= ~(I2C_CR2_NBYTES_Msk);
|
|
obj_s->handle.Instance->CR2 = cr2_val;
|
|
|
|
// Wait until the hardware ends the transfer and sets the transfer complete flag.
|
|
int timeout = FLAG_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(&obj_s->handle, I2C_FLAG_TC)) {
|
|
if ((timeout--) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate the STM32 HAL "xferOptions" value based on the current state and whether we are going to send a
|
|
* STOP at the end of the current transaction.
|
|
*/
|
|
static uint32_t get_hal_xfer_options(struct i2c_s *obj_s, bool stop) {
|
|
(void)obj_s;
|
|
|
|
// Note: The naming used by STM32 HAL is quite counterintuitive. "OTHER_FRAME" means "always send a
|
|
// start/restart condition at the start of the frame". In contrast, "FIRST_FRAME" means "don't send
|
|
// a start/restart if the previous transfer was going the same direction".
|
|
if(stop) {
|
|
// Generate start condition and stop at end
|
|
return I2C_OTHER_AND_LAST_FRAME;
|
|
} else {
|
|
// Generate only the start condition
|
|
return I2C_OTHER_FRAME;
|
|
}
|
|
}
|
|
|
|
int i2c_start(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
prep_for_restart_if_needed(obj_s);
|
|
|
|
// The I2C peripheral in this chip cannot issue a start condition without also sending the first address byte.
|
|
// So, this function just has to set a flag, and we will send the actual start condition later.
|
|
obj_s->state = STM_I2C_PENDING_START;
|
|
return 0;
|
|
}
|
|
|
|
int i2c_stop(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int timeout;
|
|
#if DEVICE_I2CSLAVE
|
|
if (obj_s->slave) {
|
|
/* re-init slave when stop is requested */
|
|
i2c_init_internal(obj, NULL);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
if(obj_s->state == STM_I2C_IDLE)
|
|
{
|
|
// We get here if we got a NACK earlier and the operation aborted itself.
|
|
// The hardware will generate a stop condition, so wait for that to happen.
|
|
timeout = BYTE_TIMEOUT/8;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_STOPF)) {
|
|
if ((timeout--) == 0) {
|
|
DEBUG_PRINTF("timeout in i2c_byte_write waiting for I2C_FLAG_STOPF\r\n");
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
__HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_STOPF);
|
|
|
|
return 0;
|
|
}
|
|
else if(!(obj_s->state == STM_I2C_SB_READ_IN_PROGRESS || obj_s->state == STM_I2C_SB_WRITE_IN_PROGRESS))
|
|
{
|
|
// Cannot use single-byte functions while a transaction is in progress.
|
|
return 3;
|
|
}
|
|
|
|
// Generate the STOP condition
|
|
handle->Instance->CR2 = I2C_CR2_STOP;
|
|
|
|
// Unfortunately, the STM32 I2C peripheral seems to be unable to generate a STOP condition immediately after the address
|
|
// byte. Simply setting CR2 to STOP (the normal procedure if at least one data byte has been sent) does not work
|
|
// -- the peripheral will hang forever and leave the bus in a bad state. STMicro seems to passively acknowledge
|
|
// this in their code (via their I2C_Flush_TXDR() HAL function).
|
|
// As the lesser of two evils, we will have to write out another byte here so that we can recover the bus,
|
|
// even though that might cause unintended behavior in some cases.
|
|
// Note: It *is* possible to do a zero-data-byte I2C transaction on these devices, but you have to use
|
|
// the transaction API, not the single-byte one.
|
|
if (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXIS) != RESET)
|
|
{
|
|
// If TXIS is set, that means we have just sent the address byte and not any data bytes yet.
|
|
handle->Instance->TXDR = 0x00U;
|
|
/* Flush TX register if not empty */
|
|
if (__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXE) == RESET)
|
|
{
|
|
__HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_TXE);
|
|
}
|
|
}
|
|
|
|
timeout = BYTE_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_STOPF)) {
|
|
if ((timeout--) == 0) {
|
|
return I2C_ERROR_BUS_BUSY;
|
|
}
|
|
}
|
|
|
|
/* Clear STOP Flag */
|
|
__HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_STOPF);
|
|
|
|
/* Erase slave address, this will be used as a marker
|
|
* to know when we need to prepare next start */
|
|
handle->Instance->CR2 &= ~I2C_CR2_SADD;
|
|
|
|
/*
|
|
* V2 IP is meant for automatic STOP, not user STOP
|
|
* SW reset the IP state machine before next transaction
|
|
*/
|
|
i2c_sw_reset(obj);
|
|
|
|
// This function restores the I2C to IDLE state.
|
|
obj_s->state = STM_I2C_IDLE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i2c_byte_read(i2c_t *obj, int last)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
uint32_t tmpreg = handle->Instance->CR2;
|
|
char data;
|
|
#if DEVICE_I2CSLAVE
|
|
if (obj_s->slave) {
|
|
return i2c_slave_read(obj, &data, 1);
|
|
}
|
|
#endif
|
|
|
|
if(obj_s->state != STM_I2C_SB_READ_IN_PROGRESS)
|
|
{
|
|
// Must be in a read operation in order to read!
|
|
return -1;
|
|
}
|
|
|
|
/* Then send data when there's room in the TX fifo */
|
|
int timeout = FLAG_TIMEOUT;
|
|
if ((tmpreg & I2C_CR2_RELOAD) != 0) {
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR)) {
|
|
if ((timeout--) == 0) {
|
|
DEBUG_PRINTF("timeout in i2c_byte_read\r\n");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (last) {
|
|
/* Disable Address Acknowledge */
|
|
tmpreg = tmpreg & (~I2C_CR2_RELOAD);
|
|
tmpreg |= I2C_CR2_NACK | (I2C_CR2_NBYTES & (1 << 16));
|
|
} else {
|
|
/* Enable reload mode as we don't know how many bytes will be sent */
|
|
/* and set transfer size to 1 */
|
|
tmpreg |= I2C_CR2_RELOAD | (I2C_CR2_NBYTES & (1 << 16));
|
|
}
|
|
|
|
/* Set the prepared configuration */
|
|
handle->Instance->CR2 = tmpreg;
|
|
|
|
timeout = FLAG_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_RXNE)) {
|
|
if ((timeout--) == 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Then Get Byte */
|
|
data = handle->Instance->RXDR;
|
|
|
|
return data;
|
|
}
|
|
|
|
int i2c_byte_write(i2c_t *obj, int data)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int timeout = FLAG_TIMEOUT;
|
|
uint32_t tmpreg = handle->Instance->CR2;
|
|
#if DEVICE_I2CSLAVE
|
|
if (obj_s->slave) {
|
|
return i2c_slave_write(obj, (char *) &data, 1);
|
|
}
|
|
#endif
|
|
|
|
if(!(obj_s->state == STM_I2C_SB_WRITE_IN_PROGRESS || obj_s->state == STM_I2C_PENDING_START))
|
|
{
|
|
// Must either be ready to send address or ready to write data bytes
|
|
return 3;
|
|
}
|
|
|
|
if (obj_s->state == STM_I2C_PENDING_START)
|
|
{
|
|
//* First byte after the start is the address */
|
|
tmpreg |= (uint32_t)((uint32_t)data & I2C_CR2_SADD);
|
|
if (data & 0x01) {
|
|
tmpreg |= I2C_CR2_START | I2C_CR2_RD_WRN;
|
|
} else {
|
|
tmpreg |= I2C_CR2_START;
|
|
tmpreg &= ~I2C_CR2_RD_WRN;
|
|
}
|
|
/* Disable reload first to use it later */
|
|
tmpreg &= ~I2C_CR2_RELOAD;
|
|
/* Disable Autoend */
|
|
tmpreg &= ~I2C_CR2_AUTOEND;
|
|
/* Set transfer size to 1 */
|
|
tmpreg |= (I2C_CR2_NBYTES & (1 << I2C_CR2_NBYTES_Pos));
|
|
/* Set the prepared configuration */
|
|
handle->Instance->CR2 = tmpreg;
|
|
|
|
// Wait until we get the result for the address byte.
|
|
// The hardware clears the I2C_CR2_START bit when the start condition has been sent.
|
|
timeout = BYTE_TIMEOUT;
|
|
while (handle->Instance->CR2 & I2C_CR2_START) {
|
|
if ((timeout--) == 0) {
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
// Set to read or write based on the address
|
|
obj_s->state = data & 0x1 ? STM_I2C_SB_READ_IN_PROGRESS : STM_I2C_SB_WRITE_IN_PROGRESS;
|
|
|
|
} else {
|
|
|
|
if(obj_s->state == STM_I2C_SB_READ_IN_PROGRESS)
|
|
{
|
|
// Cannot do a write in a read transaction!
|
|
return 3;
|
|
}
|
|
|
|
tmpreg = handle->Instance->CR2;
|
|
|
|
/* Enable reload mode as we don't know how many bytes will be sent */
|
|
tmpreg |= I2C_CR2_RELOAD;
|
|
/* Set transfer size to 1 */
|
|
tmpreg |= (I2C_CR2_NBYTES & (1 << 16));
|
|
/* Set the prepared configuration */
|
|
handle->Instance->CR2 = tmpreg;
|
|
/* Prepare next write */
|
|
timeout = FLAG_TIMEOUT;
|
|
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TXE)) {
|
|
if ((timeout--) == 0) {
|
|
DEBUG_PRINTF("timeout in i2c_byte_write waiting for I2C_FLAG_TXE\r\n");
|
|
return 2;
|
|
}
|
|
}
|
|
/* Write byte */
|
|
handle->Instance->TXDR = data;
|
|
|
|
// Wait until we get the result for that byte
|
|
// Since we set NBYTES to 1 and RELOAD to 1, the Transfer Complete Reload flag will set when this byte has transferred.
|
|
// Since we set AUTOEND to 0, the MCU will pause the SCL clock from then until we write another byte.
|
|
timeout = BYTE_TIMEOUT;
|
|
while (!(__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR) || __HAL_I2C_GET_FLAG(handle, I2C_FLAG_AF))) {
|
|
if ((timeout--) == 0) {
|
|
DEBUG_PRINTF("timeout in i2c_byte_write waiting for byte complete\r\n");
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If I2C_FLAG_AF is set, we got a NACK, and the hardware is currently generating a stop.
|
|
// Otherwise, we got an ACK.
|
|
if(__HAL_I2C_GET_FLAG(handle, I2C_FLAG_AF))
|
|
{
|
|
__HAL_I2C_CLEAR_FLAG(handle, I2C_FLAG_AF);
|
|
obj_s->state = STM_I2C_IDLE;
|
|
return 0; // NACK
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif //I2C_IP_VERSION_V2
|
|
|
|
/*
|
|
* SYNC APIS
|
|
*/
|
|
int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = I2C_ERROR_BUS_BUSY;
|
|
uint32_t xferOptions;
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
}
|
|
xferOptions = obj_s->XferOperation;
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if(!i2c_is_ready_for_transaction_start(obj_s->state))
|
|
{
|
|
// I2C peripheral is not ready to start a new transaction
|
|
return I2C_ERROR_INVALID_USAGE;
|
|
}
|
|
|
|
prep_for_restart_if_needed(obj_s);
|
|
|
|
xferOptions = get_hal_xfer_options(obj_s, stop);
|
|
#endif
|
|
|
|
obj_s->event = 0;
|
|
|
|
/* Activate default IRQ handlers for sync mode
|
|
* which would be overwritten in async mode
|
|
*/
|
|
i2c_ev_err_enable(obj, i2c_get_irq_handler(obj));
|
|
|
|
int ret = HAL_I2C_Master_Seq_Receive_IT(handle, address, (uint8_t *) data, length, xferOptions);
|
|
|
|
if (ret == HAL_OK) {
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_TR_WRITE_IN_PROGRESS);
|
|
uint32_t timeout = BYTE_TIMEOUT_US * (length + 1);
|
|
/* transfer started : wait completion or timeout */
|
|
while (!(obj_s->event & I2C_EVENT_ALL) && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
i2c_ev_err_disable(obj);
|
|
|
|
if ((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) {
|
|
DEBUG_PRINTF("TIMEOUT or error in i2c_read\r\n");
|
|
|
|
// Pass up the error code indicating a NACK
|
|
if(obj_s->event | I2C_EVENT_ERROR_NO_SLAVE)
|
|
{
|
|
count = I2C_ERROR_NO_SLAVE;
|
|
}
|
|
|
|
/* re-init IP to try and get back in a working state */
|
|
i2c_init_internal(obj, NULL);
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_IDLE);
|
|
|
|
} else {
|
|
count = length;
|
|
|
|
// If we requested repeated start, go into PENDING_START state so the user can call write_byte().
|
|
// Otherwise, we are now IDLE.
|
|
STM_I2C_SET_STATE(obj_s, stop ? STM_I2C_IDLE : STM_I2C_PENDING_START);
|
|
}
|
|
} else {
|
|
DEBUG_PRINTF("ERROR in i2c_read:%d\r\n", ret);
|
|
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_IDLE);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = I2C_ERROR_BUS_BUSY;
|
|
uint32_t xferOptions;
|
|
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
}
|
|
xferOptions = obj_s->XferOperation;
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if(!i2c_is_ready_for_transaction_start(obj_s->state))
|
|
{
|
|
// I2C peripheral is not ready to start a new transaction
|
|
return I2C_ERROR_INVALID_USAGE;
|
|
}
|
|
|
|
prep_for_restart_if_needed(obj_s);
|
|
|
|
xferOptions = get_hal_xfer_options(obj_s, stop);
|
|
#endif
|
|
|
|
obj_s->event = 0;
|
|
|
|
i2c_ev_err_enable(obj, i2c_get_irq_handler(obj));
|
|
|
|
int ret = HAL_I2C_Master_Seq_Transmit_IT(handle, address, (uint8_t *) data, length, xferOptions);
|
|
|
|
if (ret == HAL_OK)
|
|
{
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_TR_WRITE_IN_PROGRESS);
|
|
uint32_t timeout = BYTE_TIMEOUT_US * (length + 1);
|
|
/* transfer started : wait completion or timeout */
|
|
while (!(obj_s->event & I2C_EVENT_ALL) && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
i2c_ev_err_disable(obj);
|
|
|
|
if ((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) {
|
|
DEBUG_PRINTF(" TIMEOUT or error in i2c_write\r\n");
|
|
|
|
// Pass up the error code indicating a NACK
|
|
if(obj_s->event | I2C_EVENT_ERROR_NO_SLAVE)
|
|
{
|
|
count = I2C_ERROR_NO_SLAVE;
|
|
}
|
|
|
|
/* re-init IP to try and get back in a working state */
|
|
i2c_init_internal(obj, NULL);
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_IDLE);
|
|
|
|
} else {
|
|
count = length;
|
|
|
|
// If we requested repeated start, go into PENDING_START state so the user can call write_byte().
|
|
// Otherwise, we are now IDLE.
|
|
STM_I2C_SET_STATE(obj_s, stop ? STM_I2C_IDLE : STM_I2C_PENDING_START);
|
|
}
|
|
} else {
|
|
DEBUG_PRINTF("ERROR in i2c_write\r\n");
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_IDLE);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
#if DEVICE_I2C_ASYNCH
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
if ((obj->tx_buff.length) && (obj->rx_buff.length)) {
|
|
if (obj_s->stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
HAL_I2C_Master_Seq_Receive_IT(hi2c, obj_s->address, (uint8_t *)obj->rx_buff.buffer, obj->rx_buff.length, obj_s->XferOperation);
|
|
} else
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if(obj_s->state == STM_I2C_ASYNC_WRITE_IN_PROGRESS)
|
|
{
|
|
if(obj->rx_buff.length > 0)
|
|
{
|
|
// This is a write-then-read transaction, switch to reading.
|
|
uint32_t xferOptions = obj_s->stop ? I2C_FIRST_AND_LAST_FRAME : I2C_FIRST_FRAME;
|
|
HAL_I2C_Master_Seq_Receive_IT(hi2c, obj_s->address, (uint8_t *) obj->rx_buff.buffer, obj->rx_buff.length,
|
|
xferOptions);
|
|
obj_s->state = STM_I2C_ASYNC_READ_IN_PROGRESS;
|
|
}
|
|
else
|
|
{
|
|
// Write-only async transaction, we're done.
|
|
obj_s->event |= I2C_EVENT_TRANSFER_COMPLETE;
|
|
|
|
if(!obj_s->stop && !(obj_s->event & I2C_EVENT_ERROR_NO_SLAVE))
|
|
{
|
|
// If the transaction was successful and we did a repeated start, update state appropriately.
|
|
obj_s->state = STM_I2C_PENDING_START;
|
|
}
|
|
else
|
|
{
|
|
obj_s->state = STM_I2C_IDLE;
|
|
}
|
|
}
|
|
} else
|
|
#endif
|
|
#endif
|
|
{
|
|
// Set event flag. Note: We still get the complete callback even if an error was encountered,
|
|
// so use |= to preserve any error flags.
|
|
obj_s->event |= I2C_EVENT_TRANSFER_COMPLETE;
|
|
}
|
|
}
|
|
|
|
void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
#ifdef I2C_IP_VERSION_V1
|
|
hi2c->PreviousState = I2C_STATE_NONE;
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
if(obj_s->state == STM_I2C_ASYNC_READ_IN_PROGRESS)
|
|
{
|
|
if(!obj_s->stop && !(obj_s->event & I2C_EVENT_ERROR_NO_SLAVE))
|
|
{
|
|
// If the transaction was successful and we did a repeated start, update state appropriately.
|
|
obj_s->state = STM_I2C_PENDING_START;
|
|
}
|
|
else
|
|
{
|
|
obj_s->state = STM_I2C_IDLE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Set event flag. Note: We still get the complete callback even if an error was encountered,
|
|
// so use |= to preserve any error flags.
|
|
obj_s->event |= I2C_EVENT_TRANSFER_COMPLETE;
|
|
}
|
|
|
|
void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
uint32_t event_code = 0;
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
uint32_t address = 0;
|
|
/* Store address to handle it after reset */
|
|
if (obj_s->slave) {
|
|
address = handle->Init.OwnAddress1;
|
|
}
|
|
#endif
|
|
|
|
|
|
if ((handle->ErrorCode & HAL_I2C_ERROR_AF) == HAL_I2C_ERROR_AF) {
|
|
/* Keep Set event flag */
|
|
event_code = (I2C_EVENT_TRANSFER_EARLY_NACK) | (I2C_EVENT_ERROR_NO_SLAVE);
|
|
}
|
|
|
|
// If we only got a NACK, no reason to call the cavalry
|
|
if(handle->ErrorCode == HAL_I2C_ERROR_AF)
|
|
{
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_IDLE); // Hardware stops the transaction when it gets a NACK
|
|
obj_s->event = event_code;
|
|
return;
|
|
}
|
|
|
|
DEBUG_PRINTF("HAL_I2C_ErrorCallback:%d, index=%d\r\n", (int) hi2c->ErrorCode, obj_s->index);
|
|
|
|
/* re-init IP to try and get back in a working state */
|
|
i2c_init_internal(obj, NULL);
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
/* restore slave address */
|
|
if (address != 0) {
|
|
obj_s->slave = DEFAULT_SLAVE_MODE;
|
|
i2c_slave_address(obj, 0, address, 0);
|
|
}
|
|
#endif
|
|
|
|
/* Keep Set event flag */
|
|
obj_s->event = event_code | I2C_EVENT_ERROR;
|
|
}
|
|
|
|
const PinMap *i2c_master_sda_pinmap()
|
|
{
|
|
return PinMap_I2C_SDA;
|
|
}
|
|
|
|
const PinMap *i2c_master_scl_pinmap()
|
|
{
|
|
return PinMap_I2C_SCL;
|
|
}
|
|
|
|
const PinMap *i2c_slave_sda_pinmap()
|
|
{
|
|
return PinMap_I2C_SDA;
|
|
}
|
|
|
|
const PinMap *i2c_slave_scl_pinmap()
|
|
{
|
|
return PinMap_I2C_SCL;
|
|
}
|
|
|
|
#if DEVICE_I2CSLAVE
|
|
/* SLAVE API FUNCTIONS */
|
|
void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
// I2C configuration
|
|
handle->Init.OwnAddress1 = address;
|
|
HAL_I2C_Init(handle);
|
|
|
|
i2c_ev_err_enable(obj, i2c_get_irq_handler(obj));
|
|
|
|
HAL_I2C_EnableListen_IT(handle);
|
|
}
|
|
|
|
void i2c_slave_mode(i2c_t *obj, int enable_slave)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
if (enable_slave) {
|
|
obj_s->slave = DEFAULT_SLAVE_MODE;
|
|
HAL_I2C_EnableListen_IT(handle);
|
|
} else {
|
|
obj_s->slave = 0;
|
|
HAL_I2C_DisableListen_IT(handle);
|
|
}
|
|
}
|
|
|
|
// See I2CSlave.h
|
|
#define NoData 0 // the slave has not been addressed
|
|
#define ReadAddressed 1 // the master has requested a read from this slave (slave = transmitter)
|
|
#define WriteGeneral 2 // the master is writing to all slave
|
|
#define WriteAddressed 3 // the master is writing to this slave (slave = receiver)
|
|
|
|
|
|
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
/* Transfer direction in HAL is from Master point of view */
|
|
if (TransferDirection == I2C_DIRECTION_RECEIVE) {
|
|
obj_s->pending_slave_tx_master_rx = 1;
|
|
}
|
|
|
|
if (TransferDirection == I2C_DIRECTION_TRANSMIT) {
|
|
obj_s->pending_slave_rx_maxter_tx = 1;
|
|
}
|
|
}
|
|
|
|
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(I2cHandle);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
obj_s->pending_slave_tx_master_rx = 0;
|
|
}
|
|
|
|
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *I2cHandle)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(I2cHandle);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
if (obj_s->slave == SLAVE_MODE_LISTEN) {
|
|
obj_s->slave_rx_count++;
|
|
if (obj_s->slave_rx_count < obj_s->slave_rx_buffer_size) {
|
|
HAL_I2C_Slave_Seq_Receive_IT(I2cHandle, &(obj_s->slave_rx_buffer[obj_s->slave_rx_count]), 1, I2C_NEXT_FRAME);
|
|
} else {
|
|
obj_s->pending_slave_rx_maxter_tx = 0;
|
|
}
|
|
} else {
|
|
obj_s->pending_slave_rx_maxter_tx = 0;
|
|
}
|
|
}
|
|
|
|
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
if (obj_s->slave == SLAVE_MODE_LISTEN) {
|
|
obj_s->pending_slave_rx_maxter_tx = 0;
|
|
}
|
|
|
|
/* restart listening for master requests */
|
|
HAL_I2C_EnableListen_IT(hi2c);
|
|
}
|
|
|
|
int i2c_slave_receive(i2c_t *obj)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
int retValue = NoData;
|
|
|
|
if (obj_s->pending_slave_rx_maxter_tx) {
|
|
retValue = WriteAddressed;
|
|
}
|
|
|
|
if (obj_s->pending_slave_tx_master_rx) {
|
|
retValue = ReadAddressed;
|
|
}
|
|
|
|
return (retValue);
|
|
}
|
|
|
|
int i2c_slave_read(i2c_t *obj, char *data, int length)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = 0;
|
|
int ret = 0;
|
|
uint32_t timeout = 0;
|
|
int _length = 0;
|
|
|
|
if (obj_s->slave == SLAVE_MODE_LISTEN) {
|
|
/* We don't know in advance how many bytes will be sent by master so
|
|
* we'll fetch one by one until master ends the sequence */
|
|
_length = 1;
|
|
obj_s->slave_rx_buffer_size = length;
|
|
obj_s->slave_rx_count = 0;
|
|
obj_s->slave_rx_buffer = (uint8_t *)data;
|
|
} else {
|
|
_length = length;
|
|
}
|
|
|
|
/* Always use I2C_NEXT_FRAME as slave will just adapt to master requests */
|
|
ret = HAL_I2C_Slave_Seq_Receive_IT(handle, (uint8_t *) data, _length, I2C_NEXT_FRAME);
|
|
|
|
if (ret == HAL_OK) {
|
|
timeout = BYTE_TIMEOUT_US * (_length + 1);
|
|
while (obj_s->pending_slave_rx_maxter_tx && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
if (timeout != 0) {
|
|
if (obj_s->slave == SLAVE_MODE_LISTEN) {
|
|
count = obj_s->slave_rx_count;
|
|
} else {
|
|
count = _length;
|
|
}
|
|
} else {
|
|
DEBUG_PRINTF("TIMEOUT or error in i2c_slave_read\r\n");
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int i2c_slave_write(i2c_t *obj, const char *data, int length)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
int count = 0;
|
|
int ret = 0;
|
|
uint32_t timeout = 0;
|
|
|
|
/* Always use I2C_NEXT_FRAME as slave will just adapt to master requests */
|
|
ret = HAL_I2C_Slave_Seq_Transmit_IT(handle, (uint8_t *) data, length, I2C_NEXT_FRAME);
|
|
|
|
if (ret == HAL_OK) {
|
|
timeout = BYTE_TIMEOUT_US * (length + 1);
|
|
while (obj_s->pending_slave_tx_master_rx && (--timeout != 0)) {
|
|
wait_us(1);
|
|
}
|
|
|
|
if (timeout != 0) {
|
|
count = length;
|
|
} else {
|
|
DEBUG_PRINTF("TIMEOUT or error in i2c_slave_write\r\n");
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
#endif // DEVICE_I2CSLAVE
|
|
|
|
#if DEVICE_I2C_ASYNCH
|
|
/* ASYNCH MASTER API FUNCTIONS */
|
|
void HAL_I2C_AbortCpltCallback(I2C_HandleTypeDef *hi2c)
|
|
{
|
|
/* Get object ptr based on handler ptr */
|
|
i2c_t *obj = get_i2c_obj(hi2c);
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
/* Disable IT. Not always done before calling macro */
|
|
__HAL_I2C_DISABLE_IT(handle, I2C_IT_ALL);
|
|
i2c_ev_err_disable(obj);
|
|
|
|
/* Set event flag */
|
|
obj_s->event = I2C_EVENT_ERROR;
|
|
}
|
|
|
|
void i2c_transfer_asynch(i2c_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint32_t address, uint32_t stop, uint32_t handler, uint32_t event, DMAUsage hint)
|
|
{
|
|
|
|
// TODO: DMA usage is currently ignored by this way
|
|
(void) hint;
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
/* Update object */
|
|
obj->tx_buff.buffer = (void *)tx;
|
|
obj->tx_buff.length = tx_length;
|
|
obj->tx_buff.pos = 0;
|
|
obj->tx_buff.width = 8;
|
|
|
|
obj->rx_buff.buffer = (void *)rx;
|
|
obj->rx_buff.length = rx_length;
|
|
obj->rx_buff.pos = SIZE_MAX;
|
|
obj->rx_buff.width = 8;
|
|
|
|
obj_s->available_events = event;
|
|
obj_s->event = 0;
|
|
obj_s->address = address;
|
|
obj_s->stop = stop;
|
|
|
|
// For async I2C interrupts, we need to use a somewhat odd structure. We redirect the ISR to call a C++ function,
|
|
// I2C::irq_handler_asynch(). That function then sends the IRQ back down to the HAL layer, and also
|
|
// does some RTOS stuff to wake up any waiting threads.
|
|
i2c_ev_err_enable(obj, handler);
|
|
|
|
int halRet = HAL_OK;
|
|
#if defined(I2C_IP_VERSION_V1)
|
|
/* Set operation step depending if stop sending required or not */
|
|
if ((tx_length && !rx_length) || (!tx_length && rx_length)) {
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_FIRST_AND_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_FIRST_FRAME;
|
|
}
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
if (stop) {
|
|
obj_s->XferOperation = I2C_LAST_FRAME;
|
|
} else {
|
|
obj_s->XferOperation = I2C_NEXT_FRAME;
|
|
}
|
|
}
|
|
|
|
if (tx_length > 0) {
|
|
halRet = HAL_I2C_Master_Seq_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, obj_s->XferOperation);
|
|
}
|
|
else { // RX
|
|
halRet = HAL_I2C_Master_Seq_Receive_IT(handle, address, (uint8_t *)rx, rx_length, obj_s->XferOperation);
|
|
}
|
|
} else if (tx_length && rx_length) {
|
|
|
|
// Trick to remove compiler warning "left and right operands are identical" in some cases
|
|
uint32_t op1 = I2C_FIRST_AND_LAST_FRAME;
|
|
uint32_t op2 = I2C_LAST_FRAME;
|
|
if ((obj_s->XferOperation == op1) || (obj_s->XferOperation == op2)) {
|
|
halRet = HAL_I2C_Master_Seq_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, I2C_FIRST_FRAME);
|
|
} else if ((obj_s->XferOperation == I2C_FIRST_FRAME) ||
|
|
(obj_s->XferOperation == I2C_NEXT_FRAME)) {
|
|
halRet = HAL_I2C_Master_Seq_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, I2C_NEXT_FRAME);
|
|
}
|
|
}
|
|
#elif defined(I2C_IP_VERSION_V2)
|
|
|
|
prep_for_restart_if_needed(obj_s);
|
|
|
|
uint32_t xferOptions = get_hal_xfer_options(obj_s, stop);
|
|
|
|
if(!i2c_is_ready_for_transaction_start(obj_s->state))
|
|
{
|
|
// I2C peripheral is not ready to start a new transaction
|
|
return;
|
|
}
|
|
|
|
if ((tx_length && !rx_length) || (!tx_length && rx_length)) {
|
|
|
|
if (tx_length > 0) {
|
|
obj_s->state = STM_I2C_ASYNC_WRITE_IN_PROGRESS;
|
|
halRet = HAL_I2C_Master_Seq_Transmit_IT(handle, address, (uint8_t *)tx, tx_length, xferOptions);
|
|
}
|
|
else { // RX
|
|
obj_s->state = STM_I2C_ASYNC_READ_IN_PROGRESS;
|
|
halRet = HAL_I2C_Master_Seq_Receive_IT(handle, address, (uint8_t *)rx, rx_length, xferOptions);
|
|
}
|
|
|
|
} else if (tx_length && rx_length) {
|
|
obj_s->state = STM_I2C_ASYNC_WRITE_IN_PROGRESS;
|
|
halRet = HAL_I2C_Master_Seq_Transmit_IT(handle, address, (uint8_t *) tx, tx_length, xferOptions);
|
|
}
|
|
#endif
|
|
|
|
if(halRet != HAL_OK) {
|
|
DEBUG_PRINTF("Error %d trying to start async I2C transaction.\n", halRet);
|
|
}
|
|
}
|
|
|
|
|
|
uint32_t i2c_irq_handler_asynch(i2c_t *obj)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
HAL_I2C_EV_IRQHandler(handle);
|
|
HAL_I2C_ER_IRQHandler(handle);
|
|
|
|
/* Return I2C event status */
|
|
return (obj_s->event & obj_s->available_events);
|
|
}
|
|
|
|
uint8_t i2c_active(i2c_t *obj)
|
|
{
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
|
|
#ifdef I2C_IP_VERSION_V2
|
|
return !i2c_is_ready_for_transaction_start(obj_s->state);
|
|
#else
|
|
return obj_s->handle.State != HAL_I2C_STATE_READY;
|
|
#endif
|
|
}
|
|
|
|
void i2c_abort_asynch(i2c_t *obj)
|
|
{
|
|
|
|
struct i2c_s *obj_s = I2C_S(obj);
|
|
I2C_HandleTypeDef *handle = &(obj_s->handle);
|
|
|
|
/* Abort HAL requires DevAddress, but is not used. Use Dummy */
|
|
uint16_t Dummy_DevAddress = 0x00;
|
|
|
|
HAL_I2C_Master_Abort_IT(handle, Dummy_DevAddress);
|
|
|
|
STM_I2C_SET_STATE(obj_s, STM_I2C_IDLE);
|
|
}
|
|
|
|
#if MBED_CONF_TARGET_I2C_TIMING_VALUE_ALGO
|
|
/**
|
|
* @brief Calculate SCLL and SCLH and find best configuration.
|
|
* @param clock_src_freq I2C source clock in HZ.
|
|
* @param I2C_speed I2C frequency (index).
|
|
* @retval config index (0 to I2C_VALID_TIMING_NBR], 0xFFFFFFFF for no valid config.
|
|
*/
|
|
uint32_t i2c_compute_scll_sclh(uint32_t clock_src_freq, uint32_t I2C_speed)
|
|
{
|
|
uint32_t ret = 0xFFFFFFFFU;
|
|
uint32_t ti2cclk;
|
|
uint32_t ti2cspeed;
|
|
uint32_t prev_error;
|
|
uint32_t dnf_delay;
|
|
uint32_t clk_min, clk_max;
|
|
uint32_t scll, sclh;
|
|
uint32_t tafdel_min;
|
|
|
|
ti2cclk = (SEC2NSEC + (clock_src_freq / 2U)) / clock_src_freq;
|
|
ti2cspeed = (SEC2NSEC + (I2C_Charac[I2C_speed].freq / 2U)) / I2C_Charac[I2C_speed].freq;
|
|
|
|
tafdel_min = (I2C_USE_ANALOG_FILTER == 1U) ? I2C_ANALOG_FILTER_DELAY_MIN : 0U;
|
|
|
|
/* tDNF = DNF x tI2CCLK */
|
|
dnf_delay = I2C_Charac[I2C_speed].dnf * ti2cclk;
|
|
|
|
clk_max = SEC2NSEC / I2C_Charac[I2C_speed].freq_min;
|
|
clk_min = SEC2NSEC / I2C_Charac[I2C_speed].freq_max;
|
|
|
|
prev_error = ti2cspeed;
|
|
|
|
for (uint32_t count = 0; count < I2c_valid_timing_nbr; count++) {
|
|
/* tPRESC = (PRESC+1) x tI2CCLK*/
|
|
uint32_t tpresc = (I2c_valid_timing[count].presc + 1U) * ti2cclk;
|
|
|
|
for (scll = 0; scll < I2C_SCLL_MAX; scll++) {
|
|
/* tLOW(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLL+1) x tPRESC ] */
|
|
uint32_t tscl_l = tafdel_min + dnf_delay + (2U * ti2cclk) + ((scll + 1U) * tpresc);
|
|
|
|
|
|
/* The I2CCLK period tI2CCLK must respect the following conditions:
|
|
tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH */
|
|
if ((tscl_l > I2C_Charac[I2C_speed].lscl_min) && (ti2cclk < ((tscl_l - tafdel_min - dnf_delay) / 4U))) {
|
|
for (sclh = 0; sclh < I2C_SCLH_MAX; sclh++) {
|
|
/* tHIGH(min) <= tAF(min) + tDNF + 2 x tI2CCLK + [(SCLH+1) x tPRESC] */
|
|
uint32_t tscl_h = tafdel_min + dnf_delay + (2U * ti2cclk) + ((sclh + 1U) * tpresc);
|
|
|
|
/* tSCL = tf + tLOW + tr + tHIGH */
|
|
uint32_t tscl = tscl_l + tscl_h + I2C_Charac[I2C_speed].trise + I2C_Charac[I2C_speed].tfall;
|
|
|
|
if ((tscl >= clk_min) && (tscl <= clk_max) && (tscl_h >= I2C_Charac[I2C_speed].hscl_min) && (ti2cclk < tscl_h)) {
|
|
int32_t error = (int32_t)tscl - (int32_t)ti2cspeed;
|
|
|
|
if (error < 0) {
|
|
error = -error;
|
|
}
|
|
|
|
/* look for the timings with the lowest clock error */
|
|
if ((uint32_t)error < prev_error) {
|
|
prev_error = (uint32_t)error;
|
|
I2c_valid_timing[count].scll = scll;
|
|
I2c_valid_timing[count].sclh = sclh;
|
|
ret = count;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Compute PRESC, SCLDEL and SDADEL.
|
|
* @param clock_src_freq I2C source clock in HZ.
|
|
* @param I2C_speed I2C frequency (index).
|
|
* @retval None.
|
|
*/
|
|
void i2c_compute_presc_scldel_sdadel(uint32_t clock_src_freq, uint32_t I2C_speed)
|
|
{
|
|
uint32_t prev_presc = I2C_PRESC_MAX;
|
|
uint32_t ti2cclk;
|
|
int32_t tsdadel_min, tsdadel_max;
|
|
int32_t tscldel_min;
|
|
uint32_t presc, scldel, sdadel;
|
|
uint32_t tafdel_min, tafdel_max;
|
|
|
|
ti2cclk = (SEC2NSEC + (clock_src_freq / 2U)) / clock_src_freq;
|
|
|
|
tafdel_min = (I2C_USE_ANALOG_FILTER == 1U) ? I2C_ANALOG_FILTER_DELAY_MIN : 0U;
|
|
tafdel_max = (I2C_USE_ANALOG_FILTER == 1U) ? I2C_ANALOG_FILTER_DELAY_MAX : 0U;
|
|
|
|
/* tDNF = DNF x tI2CCLK
|
|
tPRESC = (PRESC+1) x tI2CCLK
|
|
SDADEL >= {tf +tHD;DAT(min) - tAF(min) - tDNF - [3 x tI2CCLK]} / {tPRESC}
|
|
SDADEL <= {tVD;DAT(max) - tr - tAF(max) - tDNF- [4 x tI2CCLK]} / {tPRESC} */
|
|
|
|
tsdadel_min = (int32_t)I2C_Charac[I2C_speed].tfall + (int32_t)I2C_Charac[I2C_speed].hddat_min -
|
|
(int32_t)tafdel_min - (int32_t)(((int32_t)I2C_Charac[I2C_speed].dnf + 3) * (int32_t)ti2cclk);
|
|
|
|
tsdadel_max = (int32_t)I2C_Charac[I2C_speed].vddat_max - (int32_t)I2C_Charac[I2C_speed].trise -
|
|
(int32_t)tafdel_max - (int32_t)(((int32_t)I2C_Charac[I2C_speed].dnf + 4) * (int32_t)ti2cclk);
|
|
|
|
|
|
/* {[tr+ tSU;DAT(min)] / [tPRESC]} - 1 <= SCLDEL */
|
|
tscldel_min = (int32_t)I2C_Charac[I2C_speed].trise + (int32_t)I2C_Charac[I2C_speed].sudat_min;
|
|
|
|
if (tsdadel_min <= 0) {
|
|
tsdadel_min = 0;
|
|
}
|
|
|
|
if (tsdadel_max <= 0) {
|
|
tsdadel_max = 0;
|
|
}
|
|
|
|
for (presc = 0; presc < I2C_PRESC_MAX; presc++) {
|
|
for (scldel = 0; scldel < I2C_SCLDEL_MAX; scldel++) {
|
|
/* TSCLDEL = (SCLDEL+1) * (PRESC+1) * TI2CCLK */
|
|
uint32_t tscldel = (scldel + 1U) * (presc + 1U) * ti2cclk;
|
|
|
|
if (tscldel >= (uint32_t)tscldel_min) {
|
|
for (sdadel = 0; sdadel < I2C_SDADEL_MAX; sdadel++) {
|
|
/* TSDADEL = SDADEL * (PRESC+1) * TI2CCLK */
|
|
uint32_t tsdadel = (sdadel * (presc + 1U)) * ti2cclk;
|
|
|
|
if ((tsdadel >= (uint32_t)tsdadel_min) && (tsdadel <= (uint32_t)tsdadel_max)) {
|
|
if (presc != prev_presc) {
|
|
I2c_valid_timing[I2c_valid_timing_nbr].presc = presc;
|
|
I2c_valid_timing[I2c_valid_timing_nbr].tscldel = scldel;
|
|
I2c_valid_timing[I2c_valid_timing_nbr].tsdadel = sdadel;
|
|
prev_presc = presc;
|
|
I2c_valid_timing_nbr ++;
|
|
|
|
if (I2c_valid_timing_nbr >= I2C_VALID_TIMING_NBR) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Compute I2C timing according current I2C clock source and required I2C clock.
|
|
* @param clock_src_freq I2C clock source in Hz.
|
|
* @param i2c_freq Required I2C clock in Hz.
|
|
* @retval I2C timing or 0 in case of error.
|
|
*/
|
|
uint32_t i2c_compute_timing(uint32_t clock_src_freq, uint32_t i2c_freq)
|
|
{
|
|
uint32_t ret = 0;
|
|
uint32_t speed;
|
|
uint32_t idx;
|
|
|
|
/* Reset valid timing count at the beginning of each new computation */
|
|
I2c_valid_timing_nbr = 0;
|
|
|
|
if ((clock_src_freq != 0U) && (i2c_freq != 0U)) {
|
|
for (speed = 0 ; speed <= (uint32_t)I2C_SPEED_FREQ_FAST_PLUS ; speed++) {
|
|
if ((i2c_freq >= I2C_Charac[speed].freq_min) &&
|
|
(i2c_freq <= I2C_Charac[speed].freq_max)) {
|
|
i2c_compute_presc_scldel_sdadel(clock_src_freq, speed);
|
|
idx = i2c_compute_scll_sclh(clock_src_freq, speed);
|
|
|
|
if (idx < I2C_VALID_TIMING_NBR) {
|
|
ret = ((I2c_valid_timing[idx].presc & 0x0FU) << 28) | \
|
|
((I2c_valid_timing[idx].tscldel & 0x0FU) << 20) | \
|
|
((I2c_valid_timing[idx].tsdadel & 0x0FU) << 16) | \
|
|
((I2c_valid_timing[idx].sclh & 0xFFU) << 8) | \
|
|
((I2c_valid_timing[idx].scll & 0xFFU) << 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* MBED_CONF_TARGET_I2C_TIMING_VALUE_ALGO */
|
|
|
|
#ifdef I2C_IP_VERSION_V2
|
|
/**
|
|
* @brief Provide the suitable timing depending on requested frequency
|
|
* @param i2c Required I2C instance.
|
|
* @param current_timing Required I2C timing value.
|
|
* @param current_hz Required I2C current hz value.
|
|
* @param hz Required I2C bus clock speed.
|
|
* @retval I2C timing value or 0 in case of error.
|
|
*/
|
|
uint32_t i2c_get_timing(I2CName i2c, uint32_t current_timing, int current_hz,
|
|
int hz)
|
|
{
|
|
uint32_t tim = 0;
|
|
uint32_t pclk;
|
|
|
|
pclk = i2c_get_pclk(i2c);
|
|
|
|
if ((current_timing == 0) || (current_hz != hz)) {
|
|
switch (pclk) {
|
|
#if defined (I2C_PCLK_32M)
|
|
case I2C_PCLK_32M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_32M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_32M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_32M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_48M)
|
|
case I2C_PCLK_48M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_48M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_48M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_48M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_54M)
|
|
case I2C_PCLK_54M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_54M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_54M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_54M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined(I2C_PCLK_64M)
|
|
case I2C_PCLK_64M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_64M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_64M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_64M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_72M)
|
|
case I2C_PCLK_72M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_72M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_72M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_72M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_80M)
|
|
case I2C_PCLK_80M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_80M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_80M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_80M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_100M)
|
|
case I2C_PCLK_100M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_100M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_100M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_100M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_110M)
|
|
case I2C_PCLK_110M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_110M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_110M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_110M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_112M5)
|
|
case I2C_PCLK_112M5:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_112M5_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_112M5_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_112M5_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_120M)
|
|
case I2C_PCLK_120M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_120M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_120M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_120M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_137M5)
|
|
case I2C_PCLK_137M5:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_137M5_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_137M5_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_137M5_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_140M)
|
|
case I2C_PCLK_140M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_140M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_140M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_140M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#if defined (I2C_PCLK_160M)
|
|
case I2C_PCLK_160M:
|
|
switch (hz) {
|
|
case 100000:
|
|
tim = TIMING_VAL_160M_CLK_100KHZ;
|
|
break;
|
|
case 400000:
|
|
tim = TIMING_VAL_160M_CLK_400KHZ;
|
|
break;
|
|
case 1000000:
|
|
tim = TIMING_VAL_160M_CLK_1MHZ;
|
|
break;
|
|
default:
|
|
MBED_ASSERT((hz == 100000) || (hz == 400000) || \
|
|
(hz == 1000000));
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
/* If MBED_CONF_TARGET_I2C_TIMING_VALUE_ALGO assert is triggered.
|
|
User need to enable I2C_TIMING_VALUE_ALGO in target.json for specific
|
|
target. Enabling this may impact performance*/
|
|
MBED_ASSERT(MBED_CONF_TARGET_I2C_TIMING_VALUE_ALGO);
|
|
#if MBED_CONF_TARGET_I2C_TIMING_VALUE_ALGO
|
|
tim = i2c_compute_timing(pclk, hz);
|
|
#endif
|
|
break;
|
|
}
|
|
} else {
|
|
tim = current_timing;
|
|
}
|
|
return tim;
|
|
}
|
|
|
|
|
|
#endif /* I2C_IP_VERSION_V2 */
|
|
|
|
#endif // DEVICE_I2C_ASYNCH
|
|
|
|
#endif // DEVICE_I2C
|