mbed-os/features/TESTS/filesystem/util_block_device/main.cpp

214 lines
6.2 KiB
C++

/* mbed Microcontroller Library
* Copyright (c) 2017 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed.h"
#include "greentea-client/test_env.h"
#include "unity.h"
#include "utest.h"
#include "HeapBlockDevice.h"
#include "SlicingBlockDevice.h"
#include "ChainingBlockDevice.h"
#include <stdlib.h>
using namespace utest::v1;
/* It is not possible to build a KL25Z image with IAR including the file system if
* stack tracking statistics are enabled. If this is the case, build dummy
* tests.
*/
#if ! defined(TOOLCHAIN_IAR) && ! defined(TARGET_KL25Z) && ! defined(MBED_STACK_STATS_ENABLED)
#define BLOCK_COUNT 16
#define BLOCK_SIZE 512
#define UTIL_BLOCK_DEVICE_TEST_01 test_slicing
#define UTIL_BLOCK_DEVICE_TEST_02 test_chaining
uint8_t write_block[BLOCK_SIZE];
uint8_t read_block[BLOCK_SIZE];
// Simple test which read/writes blocks on a sliced block device
void test_slicing() {
HeapBlockDevice bd(BLOCK_COUNT*BLOCK_SIZE, BLOCK_SIZE);
// Test with first slice of block device
SlicingBlockDevice slice1(&bd, 0, (BLOCK_COUNT/2)*BLOCK_SIZE);
int err = slice1.init();
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL(BLOCK_SIZE, slice1.get_write_size());
TEST_ASSERT_EQUAL((BLOCK_COUNT/2)*BLOCK_SIZE, slice1.size());
// Fill with random sequence
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
write_block[i] = 0xff & rand();
}
// Write, sync, and read the block
err = slice1.write(write_block, 0, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
err = slice1.read(read_block, 0, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
// Check that the data was unmodified
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
// Check with original block device
err = bd.read(read_block, 0, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
// Check that the data was unmodified
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
err = slice1.deinit();
TEST_ASSERT_EQUAL(0, err);
// Test with second slice of block device
SlicingBlockDevice slice2(&bd, -(BLOCK_COUNT/2)*BLOCK_SIZE);
err = slice2.init();
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL(BLOCK_SIZE, slice2.get_write_size());
TEST_ASSERT_EQUAL((BLOCK_COUNT/2)*BLOCK_SIZE, slice2.size());
// Fill with random sequence
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
write_block[i] = 0xff & rand();
}
// Write, sync, and read the block
err = slice2.write(write_block, 0, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
err = slice2.read(read_block, 0, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
// Check that the data was unmodified
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
// Check with original block device
err = bd.read(read_block, (BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
// Check that the data was unmodified
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
err = slice2.deinit();
TEST_ASSERT_EQUAL(0, err);
}
// Simple test which read/writes blocks on a chain of block devices
void test_chaining() {
HeapBlockDevice bd1((BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE);
HeapBlockDevice bd2((BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE);
// Test with chain of block device
BlockDevice *bds[] = {&bd1, &bd2};
ChainingBlockDevice chain(bds);
int err = chain.init();
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL(BLOCK_SIZE, chain.get_write_size());
TEST_ASSERT_EQUAL(BLOCK_COUNT*BLOCK_SIZE, chain.size());
// Fill with random sequence
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
write_block[i] = 0xff & rand();
}
// Write, sync, and read the block
err = chain.write(write_block, 0, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
err = chain.read(read_block, 0, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
// Check that the data was unmodified
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
// Write, sync, and read the block
err = chain.write(write_block, (BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
err = chain.read(read_block, (BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE);
TEST_ASSERT_EQUAL(0, err);
// Check that the data was unmodified
srand(1);
for (int i = 0; i < BLOCK_SIZE; i++) {
TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]);
}
err = chain.deinit();
TEST_ASSERT_EQUAL(0, err);
}
#else /* ! defined(TOOLCHAIN_IAR) && ! defined(TARGET_KL25Z) && ! defined(MBED_STACK_STATS_ENABLED) */
#define UTIL_BLOCK_DEVICE_TEST_01 util_block_device_test_dummy
#define UTIL_BLOCK_DEVICE_TEST_02 util_block_device_test_dummy
/** @brief util_block_device_test_dummy Dummy test case for testing when KL25Z being built with stack statistics enabled.
*
* @return success always
*/
static control_t util_block_device_test_dummy()
{
printf("Null test\n");
return CaseNext;
}
#endif /* ! defined(TOOLCHAIN_IAR) && ! defined(TARGET_KL25Z) && ! defined(MBED_STACK_STATS_ENABLED) */
// Test setup
utest::v1::status_t test_setup(const size_t number_of_cases) {
GREENTEA_SETUP(10, "default_auto");
return verbose_test_setup_handler(number_of_cases);
}
Case cases[] = {
Case("Testing slicing of a block device", UTIL_BLOCK_DEVICE_TEST_01),
Case("Testing chaining of block devices", UTIL_BLOCK_DEVICE_TEST_02),
};
Specification specification(test_setup, cases);
int main() {
return !Harness::run(specification);
}