/* mbed Microcontroller Library * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed.h" #include "greentea-client/test_env.h" #include "unity.h" #include "utest.h" #include "HeapBlockDevice.h" #include "SlicingBlockDevice.h" #include "ChainingBlockDevice.h" #include using namespace utest::v1; /* It is not possible to build a KL25Z image with IAR including the file system if * stack tracking statistics are enabled. If this is the case, build dummy * tests. */ #if ! defined(TOOLCHAIN_IAR) && ! defined(TARGET_KL25Z) && ! defined(MBED_STACK_STATS_ENABLED) #define BLOCK_COUNT 16 #define BLOCK_SIZE 512 #define UTIL_BLOCK_DEVICE_TEST_01 test_slicing #define UTIL_BLOCK_DEVICE_TEST_02 test_chaining uint8_t write_block[BLOCK_SIZE]; uint8_t read_block[BLOCK_SIZE]; // Simple test which read/writes blocks on a sliced block device void test_slicing() { HeapBlockDevice bd(BLOCK_COUNT*BLOCK_SIZE, BLOCK_SIZE); // Test with first slice of block device SlicingBlockDevice slice1(&bd, 0, (BLOCK_COUNT/2)*BLOCK_SIZE); int err = slice1.init(); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(BLOCK_SIZE, slice1.get_write_size()); TEST_ASSERT_EQUAL((BLOCK_COUNT/2)*BLOCK_SIZE, slice1.size()); // Fill with random sequence srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { write_block[i] = 0xff & rand(); } // Write, sync, and read the block err = slice1.write(write_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = slice1.read(read_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } // Check with original block device err = bd.read(read_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } err = slice1.deinit(); TEST_ASSERT_EQUAL(0, err); // Test with second slice of block device SlicingBlockDevice slice2(&bd, -(BLOCK_COUNT/2)*BLOCK_SIZE); err = slice2.init(); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(BLOCK_SIZE, slice2.get_write_size()); TEST_ASSERT_EQUAL((BLOCK_COUNT/2)*BLOCK_SIZE, slice2.size()); // Fill with random sequence srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { write_block[i] = 0xff & rand(); } // Write, sync, and read the block err = slice2.write(write_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = slice2.read(read_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } // Check with original block device err = bd.read(read_block, (BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } err = slice2.deinit(); TEST_ASSERT_EQUAL(0, err); } // Simple test which read/writes blocks on a chain of block devices void test_chaining() { HeapBlockDevice bd1((BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE); HeapBlockDevice bd2((BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE); // Test with chain of block device BlockDevice *bds[] = {&bd1, &bd2}; ChainingBlockDevice chain(bds); int err = chain.init(); TEST_ASSERT_EQUAL(0, err); TEST_ASSERT_EQUAL(BLOCK_SIZE, chain.get_write_size()); TEST_ASSERT_EQUAL(BLOCK_COUNT*BLOCK_SIZE, chain.size()); // Fill with random sequence srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { write_block[i] = 0xff & rand(); } // Write, sync, and read the block err = chain.write(write_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = chain.read(read_block, 0, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } // Write, sync, and read the block err = chain.write(write_block, (BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); err = chain.read(read_block, (BLOCK_COUNT/2)*BLOCK_SIZE, BLOCK_SIZE); TEST_ASSERT_EQUAL(0, err); // Check that the data was unmodified srand(1); for (int i = 0; i < BLOCK_SIZE; i++) { TEST_ASSERT_EQUAL(0xff & rand(), read_block[i]); } err = chain.deinit(); TEST_ASSERT_EQUAL(0, err); } #else /* ! defined(TOOLCHAIN_IAR) && ! defined(TARGET_KL25Z) && ! defined(MBED_STACK_STATS_ENABLED) */ #define UTIL_BLOCK_DEVICE_TEST_01 util_block_device_test_dummy #define UTIL_BLOCK_DEVICE_TEST_02 util_block_device_test_dummy /** @brief util_block_device_test_dummy Dummy test case for testing when KL25Z being built with stack statistics enabled. * * @return success always */ static control_t util_block_device_test_dummy() { printf("Null test\n"); return CaseNext; } #endif /* ! defined(TOOLCHAIN_IAR) && ! defined(TARGET_KL25Z) && ! defined(MBED_STACK_STATS_ENABLED) */ // Test setup utest::v1::status_t test_setup(const size_t number_of_cases) { GREENTEA_SETUP(10, "default_auto"); return verbose_test_setup_handler(number_of_cases); } Case cases[] = { Case("Testing slicing of a block device", UTIL_BLOCK_DEVICE_TEST_01), Case("Testing chaining of block devices", UTIL_BLOCK_DEVICE_TEST_02), }; Specification specification(test_setup, cases); int main() { return !Harness::run(specification); }