For L0/L4/H7/F7/WB targets that have tickless enabled, remove the tickless from
us ticker and the delay ticks as the C++ wrapper layer is being removed
and replaced by the low layer handling.
For now, the few F4 targets with LPTIM are left with previous configuration
as test results are showing a few instabilities not yet understood.
LP TICKER mbed-os wrapper needs to be disabled as it introduces too much latencies.
LP TICKER wrapper has been disabled and we need to managed the HW constraints at low level:
- main HW constraint is that once the comparator has been programmed once,
driver cannot program it again before CMPOK HW flag is set, which takes about 3 30us cycles.
To make it even more complex, the driver also needs to cope with "LP ticker workaround"
See commit:
LP ticker workaround
There is an errata in LPTIM specification that explains that CMP Flag
condition is not an exact match (COUNTER = MATCH) but rather a
comparison (COUNTER >= MATCH).
Also the disable interrupt is more complete now:
- always check sleep manager status and restore it
- remove irq_handler as comparator is always programed and might get called
eventually when LP TICK is restarted
- reset delayed_prog
Also in set_interrupt, make sure interrupt does not fire early.
If needed, we decide to slightly delay the tick to cope with the HW limitation to
make sure it will fire as soon as HW is capable.
Functions are called under critical section as they may be called from
the IRQ handler now, not only from driver layer.
There is an errata in LPTIM specification that explains that CMP Flag
condition is not an exact match (COUNTER = MATCH) but rather a
comparison (COUNTER >= MATCH).
As a consequence the interrupt is firing early than expected when
programing a timestamp after the 0xFFFF wrap-around.
In order to
work-around this issue, we implement the below work-around.
In case timestamp is after the work-around, let's decide to program the
CMP value to 0xFFFF, which is the wrap-around value. There would anyway be
a wake-up at the time of wrap-around to let the OS update the system time.
When the wrap-around interrupt happen, OS will check the current time and
program again the timestamp to the proper value.
Static keyword causes problems when trying to use force-inlined
functions from normal inlined functions. This is not legal:
static inline void forced() { }
inline void normal() { forced(); }
You cannot reference internal-linkage things from external-linkage
inline functions.
Removal of the static implies that in C there would need to be a
non-inline definition in case anyone calls it non-inlined, but if the
force attribute is doing its job, that should not happen.
Only significant in-tree user of the MBED_FORCEINLINE macro is
the atomic operations - making this change permits atomic operations
from non-static inline functions.
As the build tool in mbed-os 5.13 cannot appropriately deal with a segmented
bootloader when combining it with an application, this commit adjusts the
size reserved for interrupts (via the linker file) to avoid a bootloader
segmentation due to an unpopulated ROM area.
The microcontroller has a total of 60 vector interrupts + 16 exception
handlers. The allocated ROM flash for interrupts should be (60 + 16) x word
size in bytes = 76 x 4 = 304 = 0x130.
This commit changes the interrupt reserved space from 0x140 to 0x130.
IPV6 and IPV6V4 support is also network dependent not only modem.
Having these properties enabled for a modem requires a fallback
mechanism during PDP context activation. This mechanism is missing
at the moment and that can result in imposibility to establish
succesfull connection when network only supports IPV4 contexts.