I implemented the SLEEP feature for Rnesas mbed boards.
The mainly changing is here.
- hal_sleep()
To satisfy the mbed specificationm, I implemented this function newly by using "sleep" that is one of low power mode that is incorporated in our hardware(RZ_A1).
In the "sleep", peripheral and memory state are maintained, and the peripherals continue to work and can generate interrupts.
- hal_deepsleep()
To satisfy the mbed specificationm, I implemented this function newly by combined using "sleep" and "module standby" that is the low power mode that is incorporated in our hardware(RZ_A1).
The "module standby" is peripheral module's powerdown.
Also in case of our "module standby", it need to read register as dummy when access to each register.
These boards will be re-enabled when sleep driver for them is ready.
Note:
This operation is done by removing "SLEEP" feature from target's "device_has" list (in targets.json config file).
For NRF52_DK removing of "SLEEP" feature causes some timing issues which have influence on tests. In order to successfully disable this board we need to disable also related features like "USTICKER", "LOWPOERTIMER" and slightly modify ticker tests, so they will not be executed if usticker support is not available (by default all targets support us ticker).
Sleep - within 10us
Deepsleep - within 10ms
Note about mbed boards with interface, moved to lpc176x, as they are target related,
should be documented in the target documentation.
The tests will come as separate PR, to conform to this updates to sleep API.
- Move CRC polynomial enum into HAL layer, so it's accessible from platform
implementations
- Add enum to CRC class to indicate which mode the CRC class should use:
HARDWARE, TABLE, or BITWISE
- Add calls to HAL Hardware CRC API to each of the compute functions when the
class is in HARDWARE mode.
- Add missing constructor call to template constructor, and remove const from
delegating constructor.
Define the HAL API header for the Hardware CRC module. This set of functions
allows hardware acceleration of a subset of CRC algorithms for supported
platforms by providing access to the hardware CRC module of certain platforms.
The API is defined as four separate functions:
- hal_crc_is_supported(polynomial)
Indicates to the caller if the specific CRC polynomial is supported.
- hal_crc_compute_partial_start(const uint32_t polynomial)
Initializes the hardware CRC module with the given polynomial.
- hal_crc_compute_partial(*data, size)
Writes an array of bytes to the CRC module to be appended to the calculation
- hal_crc_get_result()
Applies the final transformations to the data and returns the result to the
caller.