Added CAN API support for NUCLEO_F042K6 target.
"stm32f042x6.h" file was changed to avoid compilation errors.
Change-Id: I9622a233775fc6834201a322740bf5026244d50e
Added CAN API support for NUCLEO_F072RB target.
*stm32f072xb.h* file was changed to avoid compilation errors.
Change-Id: I9da75fde29fd19f0326d554acc1dbb5386b08317
Added CAN API suport for NUCLEO_F091RC target.
*stm32f091xc.h* file was changed to avoid compilation errors.
Change-Id: I9207575a0e2ad0f8e3a4bb78eb23d1e7b4a94171
(long commit message ahead. Sorry about that, it can't be helped.)
This commit changs targets definition from Python to JSON format, as
part of the configuration mechanism implementation. There is a new file
under workspace_tools/ called "targets.json" which contains the target
definitions. "targets.py" remains, but becomes a wrapper on top of
"targets.json", with the same interface as before. This has the
advantage of not requiring code changes outside "targets.py".
Most of the JSON definitions of targets were automatically generated by a
script (available upon request since it doesn't make a lot of sense to
include it here), only those targets that had more than one parent in
the Python implementation were converted by hand. The target definitions
should be pretty self-explanatory. A number of things are different in
the JSON implementation (this is just a summary, check docs/mbed_targets.md
(also part of this PR) for a more complete description):
- "program_cycle_s" is now a value (as opposed to a function in the
Python implementation), since it only returned a number in all the
Python target implementations. The main definition that actually contains
some code (in class "Target") remains in target.py
- array values in "macros" and "extra_labels" can be modified
dynamically. Values can be added using "macros_add" and
"extra_labels_add" or removed using "macros_remove" and
"extra_labels_remove". This mechanism is available for all attributes
with a list type, but it's currently enabled only for "macros" and
"extra_labels" to keep things simple.
- "init_hooks"/"binary_hook" are now implemented in terms of a single
JSON key valled "post_binary_hook". The corresponding code is also in
"targets.py", under the various TargetCode classes (see for example
LPC4088Code in targets.py).
Just like in the Python implementation, a target can inherit from zero,
one or more targets. The resolution order for the target's attributes
follows the one used by the Python code (I used
http://makina-corpus.com/blog/metier/2014/python-tutorial-understanding-python-mro-class-search-path
as a reference for the implementation of resolution order).
This is obviously a very dangerous commit, since it affects all targets.
I tested compilation for a number of targets (K64F, LPC1768, NRF51822)
but there's definitely a lot more to be done in terms of testing.
I also tried to test in a different way: I wrote a script that imports the
old (Python) and the new (JSON) implementations and verifies that the
attributes in the old implementations exist and have the same values
in the new implementations (it also verifies that the attribute
resolution order is the same in the two implementations). If you're
interested, the script is here:
https://gist.github.com/bogdanm/c9d8cf34214109a4b9079befed6b3c0c
And the results of running the script are below (note that the script
outputs only the target names that were found to be problematic):
NRF51_MICROBIT_BOOT:
Resolution order is different in old and new
old: ['NRF51_MICROBIT_BOOT', 'MCU_NRF51_16K_BOOT_S110', 'MCU_NRF51_16K_BOOT_BASE', 'MCU_NRF51_16K_BASE', 'MCU_NRF51', 'Target', 'MCU_NRF51_S110']
new: ['NRF51_MICROBIT_BOOT', 'MCU_NRF51_16K_BOOT_S110', 'MCU_NRF51_S110', 'MCU_NRF51_16K_BOOT_BASE', 'MCU_NRF51_16K_BASE', 'MCU_NRF51', 'Target']
'extra_labels' has different values in old and new
old: ['NORDIC', 'MCU_NRF51', 'MCU_NRF51822', 'MCU_NORDIC_16K', 'MCU_NRF51_16K', 'MCU_NRF51_16K_BOOT', 'MCU_NRF51_16K_S110', 'NRF51_MICROBIT']
new: ['NORDIC', 'MCU_NRF51', 'MCU_NRF51822', 'MCU_NORDIC_16K', 'MCU_NRF51_16K', 'MCU_NRF51_16K_S110', 'MCU_NRF51_16K_BOOT', 'NRF51_MICROBIT']
'macros' has different values in old and new
old: ['NRF51', 'TARGET_NRF51822', 'TARGET_MCU_NORDIC_16K', 'TARGET_MCU_NRF51_16K', 'TARGET_MCU_NRF51_16K_BOOT', 'TARGET_OTA_ENABLED', 'TARGET_MCU_NRF51_16K_S110', 'TARGET_NRF51_MICROBIT', 'TARGET_NRF_LFCLK_RC']
new: ['NRF51', 'TARGET_NRF51822', 'TARGET_MCU_NORDIC_16K', 'TARGET_MCU_NRF51_16K', 'TARGET_MCU_NRF51_16K_S110', 'TARGET_MCU_NRF51_16K_BOOT', 'TARGET_OTA_ENABLED', 'TARGET_NRF51_MICROBIT', 'TARGET_NRF_LFCLK_RC']
NRF51_MICROBIT:
Resolution order is different in old and new
old: ['NRF51_MICROBIT', 'MCU_NRF51_16K_S110', 'MCU_NRF51_16K_BASE', 'MCU_NRF51', 'Target', 'MCU_NRF51_S110']
new: ['NRF51_MICROBIT', 'MCU_NRF51_16K_S110', 'MCU_NRF51_S110', 'MCU_NRF51_16K_BASE', 'MCU_NRF51', 'Target']
'extra_labels' has different values in old and new
old: ['NORDIC', 'MCU_NRF51', 'MCU_NRF51822', 'MCU_NORDIC_16K', 'MCU_NRF51_16K', 'MCU_NRF51_16K_S110']
new: ['NORDIC', 'MCU_NRF51', 'MCU_NRF51822', 'MCU_NRF51_16K_S110', 'MCU_NORDIC_16K', 'MCU_NRF51_16K']
'macros' has different values in old and new
old: ['NRF51', 'TARGET_NRF51822', 'TARGET_MCU_NORDIC_16K', 'TARGET_MCU_NRF51_16K', 'TARGET_MCU_NRF51_16K_S110', 'TARGET_NRF_LFCLK_RC']
new: ['NRF51', 'TARGET_NRF51822', 'TARGET_MCU_NRF51_16K_S110', 'TARGET_MCU_NORDIC_16K', 'TARGET_MCU_NRF51_16K', 'TARGET_NRF_LFCLK_RC']
NRF51_MICROBIT_OTA:
Resolution order is different in old and new
old: ['NRF51_MICROBIT_OTA', 'MCU_NRF51_16K_OTA_S110', 'MCU_NRF51_16K_OTA_BASE', 'MCU_NRF51_16K_BASE', 'MCU_NRF51', 'Target', 'MCU_NRF51_S110']
new: ['NRF51_MICROBIT_OTA', 'MCU_NRF51_16K_OTA_S110', 'MCU_NRF51_S110', 'MCU_NRF51_16K_OTA_BASE', 'MCU_NRF51_16K_BASE', 'MCU_NRF51', 'Target']
'extra_labels' has different values in old and new
old: ['NORDIC', 'MCU_NRF51', 'MCU_NRF51822', 'MCU_NORDIC_16K', 'MCU_NRF51_16K', 'MCU_NRF51_16K_OTA', 'MCU_NRF51_16K_S110', 'NRF51_MICROBIT']
new: ['NORDIC', 'MCU_NRF51', 'MCU_NRF51822', 'MCU_NORDIC_16K', 'MCU_NRF51_16K', 'MCU_NRF51_16K_S110', 'MCU_NRF51_16K_OTA', 'NRF51_MICROBIT']
'macros' has different values in old and new
old: ['NRF51', 'TARGET_NRF51822', 'TARGET_MCU_NORDIC_16K', 'TARGET_MCU_NRF51_16K', 'TARGET_MCU_NRF51_16K_OTA', 'TARGET_OTA_ENABLED', 'TARGET_MCU_NRF51_16K_S110', 'TARGET_NRF51_MICROBIT', 'TARGET_NRF_LFCLK_RC']
new: ['NRF51', 'TARGET_NRF51822', 'TARGET_MCU_NORDIC_16K', 'TARGET_MCU_NRF51_16K', 'TARGET_MCU_NRF51_16K_S110', 'TARGET_MCU_NRF51_16K_OTA', 'TARGET_OTA_ENABLED', 'TARGET_NRF51_MICROBIT', 'TARGET_NRF_LFCLK_RC']
NOT OK: ['NRF51_MICROBIT', 'NRF51_MICROBIT_BOOT', 'NRF51_MICROBIT_OTA']
The reasons for the above output are subtle and related to the
extremely weird way in which we defined target data in the Python
implementation: we used both class attributes and instance attributes.
This can complicate resolution order quite a bit and those two levels
don't exist in JSON: there's only one attribute type (equivalent to
Python's instance attributes). To make that work, I had to change the
inheritance order of the above targets (that use multiple inheritance)
which in turn changed the order of some macros and extra_labels (and of
course the resolution order). No harm done: the values are the same,
only their ordering is different. I don't believe this causes any
problems for 'extra_labels' and 'macros'.
This method of testing has its limitations though; in particular, it
can't test the hooks. I'm opened to ideas about how to test this better,
but I think that we need to remember that this commit might break some
targets and keep an eye out for "weird errors" in the future.
we changed the sequence of ROM section to "<ro code> <ro data>" when compiled with the IAR.
When the ROM area is large, PC could not jump properly in the program area.
The other development environment of this sequence ("ro code, ro data").
https://github.com/mbedmicro/mbed/pull/1702
In this PR, rtx has updated, the macro into the code were changed.
However, by this macro, the process of task generation in Cortex-A9 can no longer be run.
So, we solve the task generation problem by changing the macro into Tread.cpp again.
NUCLEO_L053R8 is using a 16 bit timer as a internal ticker but the mBed ticker
needs a 32 bit timer, so the upper upart of that timer is being calculated in
software. Continous HIGH/LOW voltage levels were observerd for 65ms due to timer
overflow, so to narrow down the issue, it was decided to switch to 16 bit values
and glue them to get a 32 bit timer.
Change-Id: I54a06d5aa0f8ddabd8abc194470845a2509e0c55
* [STM32F4] Get PCLK1 clock and set initial CAN frequency
CAN bus opperates on APB1 peripheral clock due to that we need to get PCLK1 freq
in *can_frequency()* function to properly calculate CAN speed and reconfigure
BS1, BS2, SJW bits.
Also to fully communicate with other ST platform we set the initical CAN
frequency to 100kb/s to be able to work with the slowest platform which supports
CAN, which is NUCLEO_F303K8 (APB1 is 32MHz).
Change-Id: I10af3aa8d715dd61c9d1b216ef813193449fecbd
* [STM32F4] Fix for CAN2 interrupt index
CAN2 interrupt index was wrong leading to not properly registering interrupt.
Having this fix allow us to pass MBED_30 test.
Change-Id: I33f9ca7c81286f7746a8f8352619e213bdf9756a
With PR #1707 all STM32F4 targets with UART4 and UART5 are broken, a several typos in function definition.
Seems to be a bug in STM32Fcube HAL, not only in the (older) mbed versin but also in current version
* [STM32F1 F4] Fix#1705 MBED_37
The transmit data register needs to be flushed at the initialisation of
the uart.
In case previous transmission was interrupted by a uart init, uart may
contain a char that will be transmitted at the next start.
This is the case in MBED_37 test (serial_auto_nc_rx).
The MCU is writting {{start}}\n
At the moment of the \n the main program is handling 'new serial'. The
next time the main program is handling a printf, the previous \n is
still present in the uart->DR register and is transmitted.
This cannot happen anymore with this commit
* [STM32_F1] Fix#1705 MBED_37 by resetting the uart
This fixes problem we have seen with rtos_idle_loop. The symbols
was not resolved as order played a role in this case. Remove circular
dependencies member, as it should not be required anymore.
This causing a warning in the rt_cmsis.c, as they use preprocessor
to redefine a type. A fix is to move the macro above, as it should not
change anything else. This should be removed, and use a cast, however I am
not fully familiar why they do this macro trick.
2 new macros were introduced to capture changes in the kernel. We used toolchains/__init__
script to capture those, which is not in the sync with actual sources. This fix introduces
those macros in the source, rather than a script.
We will further eliminate those macros to be used outside of RTX kernel (c++ API).