While configuring RX parameters for the radio, we need to feed in
rx windows 1 and 2 parameters which are computed when we do the transmission.
We are actually setting the physical value of the data rate rather than
data rate table index and the expectation was to set the data rate index.
The asia pacific region supports custom channel planning and
downlink channel request. By virtue of a mistake, this information
was missing and hence a custom channel support was not working.
Fixes issue #6783.
There had been essentially two state machines running in our stack
which was too cumbersome and was not alligned in any symmetry.
In this work we make sure that:
* There are no callbacks from the MAC layer to Stack controller layer.
* Primitives are made local to the mac layer and are presented as
read-only to the stack controller layer.
* Interrupt handling and processing is moved to the stack controller layer.
* Reception is divided into smaller units, seperating handling of Join Accept
and normal data frames. MIC gets its own unit.
* Extraction of data and MAC commands from the payload is also being done now in
its own method.
* To ensure integrity of the stack, and sanctity of the radio payload, we copy the
radio payload buffer immediately in the rx interrupt and hoist a flag that prevents
another interrupt from happening for a short while when we are processing the previous
packet.
* If an automatic uplink is on going, we do not send a TX_DONE event to application
anymore as that is logically incorrect.
* state_controller() is the central engine for the state machine. To save code space and
memory, we are not handling each and every state in the state_controller(). Some of the states
which have no processing to be done, are explicitely set.
* For all the states who need special processing, seperate methods are added.
* Class A always run to completion to IDLE and CLass C always runs to completion as RECEIVING.
Making our LoRaWAN stack thread safe. If RTOS is not present, locks
don't do anything. ScopedLock is used to automate the lock release on
context expiry.
We went through an exercise of adding band information to
any new channel being added. Default channels were looked over.
This commits duly adds missing band information to default channels.
A bug, #6755, was the result of the `subtract_basepath` function not
being applied to a resources object's children (it's features). This PR
fixes this bug by moving this functionality into the resources class.
Then, I applied the `subtract_basepath` method to the children resource
objects recursively. This has been tested on Partnerbeta and is to
upstream the fix.
Old order:
* --test-config
* --app-config
* test config (as defined in test_config)
* `mbed_app.json` in root.
New order:
* --test-config
* --app-config
* `mbed_app.json` in root.
* test config (as defined in test_config)~
This matches the documentation and user expectation
If Lora stack is built with incorrect mbedtls settings, crypto methods
should assert and return error value. This fixes MBED_ASSERTs to
work correctly.
Now application can call connect and disconnect multiple times and resources are freed and constructed properly.
Also whole easycellular can be deleted and constructed again.
The MBR VTOR state depends on how the application is booted.
This makes it difficult to initialize the MBR correctly since a
bug prevents the MBR from being initialized more than once.
This commit resets the MBR and SoftDevice to a known state before
initializing the MBR and setting the VTOR through the SoftDevice.