Rather than Unlocking flash during flash object creation, and leaving
the flash possibly continuously unlocked a(s object might bever be freed),
we decide to Unlock then Lock again at each erase or program call.
After reset the MCR register content needs to be restored so we're
introducing the can_registers_init function to be called at the first
init stage, but also after reset. We also store the can frequency to
go through the initialisation phase again.
Instead of a static object, this will make driver
instantiation more robust and allow to re-use init
configuration on a need basis.
The CANName struct member is actually the CAN registers base address,
which is now available in the CanHandle.Instance field, so we don't need
CANName anymore.
Users of FlashIAP usually get the minimum programable size
by calling flash.get_page_size(), so let's return the minimum
to allows a most efficient usage of flash.
For F4 devices, this is 1 byte.
For L0 and L1 devices, this is a word (4 bytes).
For L4 devices, this is a double word (8 bytes).
- default value is the same as before patch
- system_stm32l4xx.c file is copied to family level with all other ST cube files
- specific clock configuration is now in a new file: system_clock.c (target level)
- nvic_addr.h file is now in TARGET_STM level
In this commit, the analogin_s structure is moved to commonn_objects.h file
to limit the duplicaion.
The ADC handle is moved from a global variable to a struct member of the
analogin object. This allows multiple ADC instances to work correctly.
Note that State needs to be explicitely set to HAL_ADC_STATE_RESET
because the object is not zero initialized.
TXE indicates that a byte can be written to UART register for sending,
while TC indicates that last byte was completely sent. So the TXE flag
can be used in case of interrupt based Serial communication, to allow
faster and efficient application buffer emptying.
Also TXE flag will be erased from the interrupt when writing to register.
In case there is nothing to write in the register, the application is
expected to disable the interrupt.
The RXNE flag is getting cleared when reading Data Register so it should
not be cleared here. Especially in case of high data rate, another byte of
data could have received during irq_handler call and clearing the flag
would read and discard this data which would be lost for application.
Depending on families, different HAL macros are defined to check the
state of serial interrupts. In several cases, we can find only 1 macro:
__HAL_UART_GET_IT_SOURCE
Checks whether the specified UART interrupt has occurred or not
But in F0, F3, F7, L0, L4 there are 2 different macros
__HAL_UART_GET_IT
Checks whether the specified UART interrupt has occurred or not
__HAL_UART_GET_IT_SOURCE
Checks whether the specified UART interrupt source is enabled.
In the later case, __HAL_UART_GET_IT_SOURCE was being used so far,
but actually needs to be replaced by __HAL_UART_GET_IT. Using the right
macro, we also check the proper flags accordingly.
Moving some code in common to be able to manage several ADC instances,
or several channels of an instance.
The change involves:
- moving dac_s structure definition to common_object.h
- create TARGET_STM/analogout_api.c and move fully common analog_out
functions in there
- rename analogout_api.c of each target family into analogout_device.c
to keep platform specific code
- update analogout_device.c to rely on obj->handle and obj->channel
- align analogout_init function as much as possible between families in
analogout_device.c files