BE to LE fixes, missing MLME types added
LoRaWAN 1.1 Features added (Some LoRaPhy impl missing still + some TODOs in code)
- MLME confirm handling refactored
- Rejoin handling missing
- new CF_LIST mechanism missing (+resets involved)
- NVM handling missing
Rejoin logic added
_ongoing_tx_msg was incorrectly initialized before _mlme_confirmation.
Fixes following build warning:
[Warning] LoRaMac.h@691,26: 'LoRaMac::_ongoing_tx_msg' will be initialized after [-Wreorder]
[Warning] LoRaMac.h@689,28: 'loramac_mlme_confirm_t LoRaMac::_mlme_confirmation' [-Wreorder]
[Warning] LoRaMac.cpp@68,1: when initialized here [-Wreorder]
This prevents RX2 window to be enabled at the same time when repeating
transmission, when QoS repeated TX is in effect. Failure to do so
seems to place the LoRaWAN stack in a state where send() always fails
with WOULD_BLOCK error.
In AU/CN/US PHY, RX1 slot frequency is calculated in rx_config().
Since the caller is printing it to log, modify the frequency in
parameter structure so that the correct value will be printed.
Reimplement atomic code in inline assembly. This can improve
optimisation, and avoids potential architectural problems with using
LDREX/STREX intrinsics.
API further extended:
* Bitwise operations (fetch_and/fetch_or/fetch_xor)
* fetch_add and fetch_sub (like incr/decr, but returning old value -
aligning with C++11)
* compare_exchange_weak
* Explicit memory order specification
* Basic freestanding template overloads for C++
This gives our existing C implementation essentially all the functionality
needed by C++11.
An actual Atomic<T> template based upon these C functions could follow.
We provide now downlink channel frequency and time on air for the
received frame in the RX metadata.
Previously the channel information in both TX and RX metada contained
the index number of the channel. That information wasn't very useful
except the index numbers of default channels. To make more sense of the
meta data, we now store the channel frequency in the channel parameter
rather than the index number of the channel.
RX time on air is collected from the radio driver and it is assumed that
the downlink frame had 8 downlink preamble symbols (plus 4.25 of the
preambles added by the chip) for LoRa modulation.
This commit also include a bit of tidying of RX frequency storage in rx
configuration parameters storage. Previously we were missing filling in
the RX1 frequency correctly.
A bug while setting up RX start timers would result in premature closusre
of RX2 window. The 'ack_Timeout_timer' would be invoked prematurely and
at that time RX2 window may be being demodulating. This resulted in
massive instability with any test that relied on Confirmed traffic or
lower data rates.
To fix the issue, we must know the length of the RX window in
milliseconds and for this purpose we have extended the
'get_rx_window_params(...)' API. The length of the time the window
may remain open must be accounted for while setting up
'ack_timeout_timer'.
While calculating ack timeout, we were ending up getting a random value
which may become less than 2 seconds. This is not allowed as per v1.0.2
specification.
To fix the issue we now take the random number from 0 to 2000 ms and
then add that to the fixed 2000 ms ack timeout value, guaranteeing a
value at least equal to 2000 ms.
In a specific branch path 'adr_settings' in link_adr_request() API, the
structure adr_settings of type link_adr_params_t will be rendered
uninitialized. To prevent this we initialize the construct as zero.
In addition to that, to handle the case properly we should check for the
command identifier and the command payload length anticipating contiguous
blocks of adr commands. If we find a discrepency in size, we should
abort.
Adding group identidier so that LoRaWANInterface class goes to the class
hierarchy section rather than data-structures.
Adding missing documentation for a couple of public functions.
Adding \code and \endcode modifiers for the example code in the
documentation.
Adding compile time NO_DOXYGEN flag for the implementations of the
LoRaPHY Class.
Adding documentation for some of the private structures.
It was decided within the team to retire LoRaWANBase class which served
as a pure virtual interface class from which LoRaWAN network stack
implementations would get inherited. However, the current view is that
we may be the only user of it so we could retire LoRaWANBase.
Randomizing backoff by 200ms to 1000ms for Join Requests in a dense
network will add robustness and better chances of reception by the base
station especially in cases of catastrophic network outage and
reconnection.
A new algorithm has been taken in use to calculate the receive window
length and the timing offset involved in opening of the said receive
window. This algorithm performs better than the stock algorthm and
consumes less power.
Previously we had been incrementing UL frame counter for a CONFIRMED
message only when the transmission was deemed successful i.e., we would
have received an ack before all the retries would have exhausted.
Now we have opted to increment the frame counter if all the retries are
exhausted considering the fact that we essentially treat the next
message after retry exhaustion as a new packet so we should also
increment the frame counter.
Previously, we weren't filling in RX1 frequecny in rx_window1_config
structure. However, everything worked as in LoRaPHY::rx_config() API
there was a check which filled in correct RX1 frequency.
Now we are filling in RX1 freq. properly while we are computing
parameters for RX1 window.
The idea behind the method post_process_no_reception() is to post
process any outgoing TX but we shouldn't do that if a CONFIRMED message
is outgoing and there are still some retries left.
After transmission we should change the state before invoking opening of
slots as we may start receiving in the rx slots and the state would
suddenly change from SENDING to RECEIVING without going through the
ACK_WAIT state (in case of CONFIRMED messages). Tests show that after
this slight adjustment, our number of ack retries have significantly
reduced.
LinkADRReq mac command can be used by the network server to set a
certain level of QOS using NbTrans field which is applicable to
Unconfirmed traffic only for 1.0.2 spec.
This commit introduces mechanisms to facilitate this QOS. It means to
repeat an outgoing unconfirmed message NbTrans times without changing
its frame counter.
For class C, we have retired the ack_expiry_timer_for_class_c and have
replaced it with another timer which mimics the RX2 closure as in Class
A but doesn't actually close RX2 window. It's just a mechanism by which
the state machine is informed that the you can proceed forward, we have
not received anything in RX2 window either. This is needed as RX2
doesn't timeout in class C (i.e., the radio remains in continuous mode).
In addition to that we need to close any pending timers for Receive
windows after the MIC has passed and the Duplicate counter check has
also been passed.
Before going after an automatic uplink, we should check if there was an
automatic uplink already ongoing, i.e., the ack for the previous
automatic uplink cycle has not been received.
If there is we shouldn't queue the new automatic uplink and wait for
the previous Ack cycle to complete.
If the packet is already handed over to the PHY layer, we shouldn't be
able to cancel that particular transmission. In addition to that if the
backoff timer is either not applied or has been deactivated, should end
up in no-op rather than having normal termination. A new error code has
been introduced to cover no-op cases. This error code replaces the
compliance test related error code which is no longer relevant.
clear_tx_pipe() does nothing if:
- The stack cannot cancel TX (already handed over to PHY)
- The backoff timer is not active at all
- The event is disaptched to schedule
stop_sending() will only post process ongoin TX if the pipe was
definitely cleared.
Previously, we weren't filling in RX1 frequecny in rx_window1_config
structure. However, everything worked as in LoRaPHY::rx_config() API
there was a check which filled in correct RX1 frequency.
Now we are filling in RX1 freq. properly while we are computing
parameters for RX1 window.
The idea behind the method post_process_no_reception() is to post
process any outgoing TX but we shouldn't do that if a CONFIRMED message
is outgoing and there are still some retries left.
After transmission we should change the state before invoking opening of
slots as we may start receiving in the rx slots and the state would
suddenly change from SENDING to RECEIVING without going through the
ACK_WAIT state (in case of CONFIRMED messages). Tests show that after
this slight adjustment, our number of ack retries have significantly
reduced.
LinkADRReq mac command can be used by the network server to set a
certain level of QOS using NbTrans field which is applicable to
Unconfirmed traffic only for 1.0.2 spec.
This commit introduces mechanisms to facilitate this QOS. It means to
repeat an outgoing unconfirmed message NbTrans times without changing
its frame counter.
For class C, we have retired the ack_expiry_timer_for_class_c and have
replaced it with another timer which mimics the RX2 closure as in Class
A but doesn't actually close RX2 window. It's just a mechanism by which
the state machine is informed that the you can proceed forward, we have
not received anything in RX2 window either. This is needed as RX2
doesn't timeout in class C (i.e., the radio remains in continuous mode).
In addition to that we need to close any pending timers for Receive
windows after the MIC has passed and the Duplicate counter check has
also been passed.
Before going after an automatic uplink, we should check if there was an
automatic uplink already ongoing, i.e., the ack for the previous
automatic uplink cycle has not been received.
If there is we shouldn't queue the new automatic uplink and wait for
the previous Ack cycle to complete.
While performing compliance tests with an industry tester, we realized
that there was no need for any extra handling code for the compliance
tests. The tests would run fine, if we only have a handling application.
However, in normal operation we wouldn't like the network to send us any
traffic on compliance testing port. To mitigate that, on the reception
path we filter out any traffic on compliance testing port if compliance
testing is not underway. User should define LORAWAN_COMPLIANCE_TEST macro
in mbed_app.json to enable traffic on compliance test port.
This commit fixes two bugs related to ADRAckReq:
- adr_ack_counter must be incremented for all uplink messages (not just confirmed)
- When ADR_ACK_LIMIT + ADR_ACK_DELAY has been reached, stack decreased used
datarate twice.
The length of a MAC command is not explicitly given and must be
implicitly known by the MAC implementation. Therefore unknown MAC
commands cannot be skipped and the first unknown MAC command
terminates the processing of the MAC command sequence.
This commit fixes the bug where MAC command processing was not
terminated when unknown MAC command was received.
When application requests link check request with add_link_check_request()
it was added to MAC command buffer. Again when actual TX was started,
stack cherry-picked the request into MAC buffer again resulting in a duplicate
entry in the buffer.
Functionality is changed now so that add_link_check_request() does not add
the request into MAC command buffer but it is cherry-picked into the buffer when
TX is issued.
set_next_channel() is the base function provided by LoRaPHY class and should be overridden
by the PHYs who behave differently as compared to EU868 like PHY layers.
CN470 PHY had been missing such an override.
In addition to that we have provided a parameter "fsb-mask-china" that can be used to
enforce a custom frequency sub-band of operation as most of the base stations in the market
may not support all 96 channels. Such a strategy will help in rapid network acquisition.
Users often use "show declaration" (or similar) in their IDE to see descriptions of callback
methods so the function descriptions should be placed close to function declaration itself.
This phy implementation was just to support a single sub-band in US region.
As we have decided to make FSBs configurable, we do not need this class anymore.
Just like US915 PHY, user can define a custom FSB mask for AU915 PHY.
This helps deployments where base stations do not portray full feature
channel sets and choose to stick with sub-bands.
Some LoRaMac methods were defined as public even though there were used only
internally.
Also removed definition of some methods which were not even implemented nor used.
- Duty cycle can be now only disabled with duty-cycle-on flag if region supports duty-cycle.
If region does not support duty-cycle, this flag has no effect and duty cycle is always
disabled.
- Also introduced a new flag (duty-cycle-on-join) to disable duty cycle for JOIN requests.
This flag can be used for testing only and is used to speed up JOIN request testing as
backoff times for JOIN request are really long (easily several minutes per attempt).
This flag works in conjunction with main duty cycle setting. Disabling duty-cycle-on-join
works only if duty-cycle-on is disabled (or region settings have duty cycle disabled).
In #b0b0261 we changed the RX2 data rate to start from the highest data rate
available for the PHY rather than standard defined DR.
This introduced a regression, i.e., even when somebody changed the default RX2 data
rate to something usable for their environment, it didn't take any effect. As in
reset_mac_params() we override the data rate with max value possible for that PHY.
This commit restores the original behaviour and we always use standard defined
values.
In release builds where MBED_ASSERT macro is syphoned off, we were hitting
an unused variable warning. To mitigate that we could direct the variable
used in MBED_ASSERT to void.