Chrono conversions inadvertantly changed the core timed sleep routine
used by the RTOS idle to use `OsTimer::update_and_get_tick()` instead of
`OsTimer::get_tick()`.
Correct this, and expand/clarify documentation and naming to try to
prevent recurrence.
Another minor fix observed while inspecting code - `OsClock` can't just
use `milliseconds`, it should match the period of `OsTimer`, which
theoretically can be different.
ARMC6's assert macro does not work in C++14 constexpr context as it should.
By defining __DO_NOT_LINK_PROMISE_WITH_ASSERT, we deactivate the
extension that breaks it (having `__promise` inside `assert` - see the
compiler manual).
The extension does not appear to be useful - we have no code using
ARMC6's `__promise` directly, and putting a `__promise` inside the
assert does not appear to affect code generation in my tests.
Avoid surprising users. Use the Mbed OS default baud rate. Applications
that want to see TF-M debug prints can both enable and set their baud
rate at the application level. Mbed OS should not turn on TF-M debug
prints nor surprise the user with a non-default baud rate.
Signed-off-by: Jaeden Amero <jaeden.amero@arm.com>
Remove all PSA S-mode only code, as it is unused. Only PSA S targets
would use the code, and we've removed those targets in a previous
commit.
Ensure all tests for S-mode code we are deleting is also removed, even
if that code would run in NS-mode. Keep any tests that also test our PSA
emulation support (for single v7-M targets).
Signed-off-by: Jaeden Amero <jaeden.amero@arm.com>
* Timer test - handle removal of Timer(ticker_data_t *)
* Timer test - use Chrono, don't test deprecated methods
* Kernel tick count test - TEST_ASSERT_WITHIN -> TEST_ASSERT_INT_WITHIN
* Mutex test - fix up Chrono changes
* SysTimer test - adapt to SysTimer Chrono changes
* Thread test - use Chrono
* SysTimer - devirtualize destructor
Use correctly-typed external definition for the crash data region, and
eliminate unnecessary pointer indirection.
Results in a small ROM saving even with crash capture disabled, as there
was a pointer for the fault context store in either case. The pointer
isn't needed, as the context store location is fixed according to the
configuration flag.
Return the correct filehandle based on the mode requested. The mode is used
as the pathname is always the default one (":tt") for Microlib. The
previous implementation relied on three successive calls to open the std
I/O device handles, this was not the case.
mbed_minimal_putchar assumed that buffer being NULL meant that it
should print to a file. This caused a system crash when calling
snprintf with both buffer and stream set to NULL.
It is valid to call snprintf with a NULL buffer; nothing should
be outputted, but the string length should be measured.
* Optimise clearing by adding `nullptr` overload. This overload means
`Callback(NULL)` or `Callback(0)` will no longer work; users must
use `Callback(nullptr)` or `Callback()`.
* Optimise clearing by not clearing storage - increases code size of
comparison, but that is extremely rare.
* Reduce ROM used by trivial functors - share copy/destroy code.
* Config option to force trivial functors - major ROM saving by
eliminating the "operations" table.
* Config option to eliminate comparison altogether - minor ROM saving by
eliminating zero padding.
* Conform more to `std::function` API.
Define copy operators public and deleted rather declaring them private
and undefined. Will give immediate compilation errors rather than
delayed linking errors.
Musca-B1 is a Cortex-M33 based target with security extension enabled.
- ARM_MUSCA_B1 is the non-secure target running mbed-os.
- ARM_MUSCA_B1_S is the secure target running TF-M.
- TF-M sources were imported and patched in previous commits.
- TF-M secure bootloader (McuBoot) for MUSCA_B1 is submitted by a
pre-built binary.
- A post-build hook concatenates The secure and non-secure binaries,
signs it and then concatenates the bootloader with the signed binary.
Change-Id: I4b36290941b5f0bb7aa7c12dda2f38b5c1e39ae2
Signed-off-by: Tamas Kaman <tamas.kaman@arm.com>
Signed-off-by: Gabor Abonyi <gabor.abonyi@arm.com>
This code prevents the ARMC6 compiler/linker from removing
SUB_REALLOC/CALLOC symbols from image when LTO is enabled
Fixes below error:
L6137E: Symbol $Sub$$calloc was not preserved by the LTO codegen but is needed by the image.
In mbed_start_application() there was a code that was supposed to
set DISDEFWBUF to one when running a debug build. However, this code
was in the wrong place, as this function is only called from
bootloader.
Move the code to correct place so that standalone applications use it
as well.
For the reference of DISDEFWBUF bit, see
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0552a/CHDCBHEE.html
`SysTimer::set_wake_time` incorrectly assumed that the `SysTimer`s tick
count and the underlying HAL timer had the same zero base. This normally
holds, at least approximately, in RTOS builds where the HAL timer starts
from zero at the same time the SysTimer is initialised.
But in bare metal builds, the HAL timer could be started some time
before the SysTimer, giving a significant discrepancy.
Beyond that, there's no requirement for HAL timers to start from zero in
the spec.
Record the HAL timer start time to get the conversion right.
Adding a new target of HW development kit using [Samsung Exynos i S111](https://www.samsung.com/semiconductor/minisite/exynos/products/iot/exynos-i-s111/) module to Mbed-OS.
This will widen the HW choices of Mbed-OS enabled NB-IoT, GNSS and Security (eFuse, AES, SHA-2, PKA, Secure Storage, Security Sub-System, [PUF](https://en.wikipedia.org/wiki/Physical_unclonable_function)) modules.
Target Name: S5JS100
Co-authored-by: Ivan Galkin <ivan.galkin@samsung.com>
Co-authored-by: Seokwon Lee <swon.lee@samsung.com>
Co-authored-by: Zhizhe Zhu <zhizhe.zhu@samsung.com>
Co-authored-by: Xinyi Zhao <xinyi.zhao@samsung.com>
Enabled heap_and_stack test for baremetal.
Added a test to check that global variables are initialised.
In mbed_sdk_boot:
- Added initialisation for mbed_stack_isr_start/size and mbed_heap_start/size for all toolchains.
- ARM toolchain:
- Added call to mbed_toolchain_init() to initialise global variables.
- Moved microlib initialisation code from mbed_retarget.cpp to mbed_sdk_boot.c.
- IAR toolchain: there is no equivalent to a software init hook that can be called. __low_level_init() was used but since this function is called before RAM initialisation, it cannot be used to initialize global variables. Defined a new __mbed_init() function called from IAR startup file instead.