Ensure WICED is included for Mbed targets that require it.
This also removes the need for checking MBED_TARGET_LABELS repeatedly and
allows us to be more flexible in the way we include MBED_TARGET
source in the build.
A side effect of this is it will allow us to support custom targets
without breaking the build for 'standard' targets, as we use CMake's
standard mechanism for adding build rules to the build system, rather
than implementing our own layer of logic to exclude files not needed for
the target being built. Using this approach, if an MBED_TARGET is not
linked to using `target_link_libraries` its source files will not be
added to the build. This means custom target source can be added to the
user's application CMakeLists.txt without polluting the build system
when trying to compile for a standard MBED_TARGET.
Refactor all Toshiba targets to be CMake buildsystem targets. This removes
the need for checking MBED_TARGET_LABELS repeatedly and allows us to be
more flexible in the way we include MBED_TARGET source in the build.
A side effect of this is it will allow us to support custom targets
without breaking the build for 'standard' targets, as we use CMake's
standard mechanism for adding build rules to the build system, rather
than implementing our own layer of logic to exclude files not needed for
the target being built. Using this approach, if an MBED_TARGET is not
linked to using `target_link_libraries` its source files will not be
added to the build. This means custom target source can be added to the
user's application CMakeLists.txt without polluting the build system
when trying to compile for a standard MBED_TARGET.
Refactor all Freescale targets to be CMake buildsystem targets. This removes
the need for checking MBED_TARGET_LABELS repeatedly and allows us to be
more flexible in the way we include MBED_TARGET source in the build.
A side effect of this is it will allow us to support custom targets
without breaking the build for 'standard' targets, as we use CMake's
standard mechanism for adding build rules to the build system, rather
than implementing our own layer of logic to exclude files not needed for
the target being built. Using this approach, if an MBED_TARGET is not
linked to using `target_link_libraries` its source files will not be
added to the build. This means custom target source can be added to the
user's application CMakeLists.txt without polluting the build system
when trying to compile for a standard MBED_TARGET.
This removes the need for checking MBED_TARGET_LABELS repeatedly and allows us to be
more flexible in the way we include MBED_TARGET source in the build.
A side effect of this is it will allow us to support custom targets
without breaking the build for 'standard' targets, as we use CMake's
standard mechanism for adding build rules to the build system, rather
than implementing our own layer of logic to exclude files not needed for
the target being built. Using this approach, if an MBED_TARGET is not
linked to using target_link_libraries its source files will not be
added to the build. This means custom target source can be added to the
user's application CMakeLists.txt without polluting the build system
when trying to compile for a standard MBED_TARGET.
Refactor all NXP targets to be CMake build system targets. This removes
the need for checking MBED_TARGET_LABELS repeatedly and allows us to be
more flexible in the way we include MBED_TARGET source in the build.
A side effect of this is it will allow us to support custom targets
without breaking the build for 'standard' targets, as we use CMake's
standard mechanism for adding build rules to the build system, rather
than implementing our own layer of logic to exclude files not needed for
the target being built. Using this approach, if an MBED_TARGET is not
linked to using target_link_libraries its source files will not be
added to the build. This means custom target source can be added to the
user's application CMakeLists.txt without polluting the build system
when trying to compile for a standard MBED_TARGET.
Refactor all Renesas targets to be CMake buildsystem targets. This removes
the need for checking MBED_TARGET_LABELS repeatedly and allows us to be
more flexible in the way we include MBED_TARGET source in the build.
A side effect of this is it will allow us to support custom targets
without breaking the build for 'standard' targets, as we use CMake's
standard mechanism for adding build rules to the build system, rather
than implementing our own layer of logic to exclude files not needed for
the target being built. Using this approach, if an MBED_TARGET is not
linked to using `target_link_libraries` its source files will not be
added to the build. This means custom target source can be added to the
user's application CMakeLists.txt without polluting the build system
when trying to compile for a standard MBED_TARGET.
We need to fix linker script differently, it should not need APP_TARGET. This is a series of
commits fixing APP_TARGET in our tree. We should not require it.
The linker script preprocessing will be fixed differently. "application" prefix is temporary until
we clean this up completely.
This fixes the problem for an app/test to define APP_TARGET as requirements. This is not a proper fix
but rather a workaround for broken apps/tests currently. We will address this separately via new
pull request.
We set language standard via mbed-core and app inherits it if links to it.
This is breaking change for application, please remove the function call from an
application and it should build without errors.