Currently, if all TX descriptors are in use and IP stack calls K64F/K66F
ethernet driver link out, link out drops the packet. Added 10ms delay
to link out to wait for a descriptor to become available before dropping
the packet.
Changed K64F/K66F power up to return without waiting for link up i.e. for
the ethernet cable to be connected. This is needed for non-blocking use
of driver e.g. for using the driver from event queue.
When all TX descriptors were reserved in a row so that TX buffer
reclaim interrupt did not happen during reservation sequence, after
the interrupt occurred, TX buffer reclaim did no longer free buffers.
This happened because when all descriptors were in use, last free
index pointed to consumed index.
TX pointer array was using RX ring length in its declaration.
Wasted memory if RX ring > TX ring, as is the default, but would
be broken if RX ring < TX ring.
16 RX buffers and 8 TX buffers is probably excessive. Nanostack
version of driver successfully used 4+4, and data pump should be
broadly equivalent.
This means that switching K64F devices from Nanostack to EMAC increases
base heap usage by 18K - observed in Nanostack border router builds.
Add a config option to make it possible to lower the number of buffers.
Defer consideration of lowering the default to later.
Subtract 4 from the received packet length - the buffer contains the
CRC, which we shouldn't pass up.
Ensure we allocate receive buffers of a size corresponding to the
rounded-up size we tell the hardware - the hardware was overrunning the
allocation by a couple of bytes.
Implementation of unified EMAC driver for Renesas mbed boards
Based on the driver so far, Renesas implemented the emac driver for GR-PEACH and VK-RZ/A1H.
The mainly changes is below.
- Add the connection part with LWIP according to the unified emac specification.
- Add three new multicast functions(add, remove, set_all).
The Greentea test netsocket and emac test passed.
Just checking "does the chip have an EMAC" doesn't work - there are
targets using those chips which do not have an Ethernet connector and
don't provide the necessary surrounding infrastructure (eg DISCO_F429ZI,
not providing the board emac config call, and HEXIWEAR not providing PHY
info).
Make the targets that actually do want EMAC define their own local
Freescale_EMAC and STM_EMAC labels, and move the drivers into
the corresponding TARGET_ directories, removing the #ifdefs.
Checking DEVICE_EMAC is problematic - particularly for the Odin W2 where
apps have been shutting this off to disable the Wi-fi interface.
Make drivers check a locally-relevant flag instead, pending new
thoughts on how to achieve application/test-relevant flagging for
XXX:get_default_instance() being provided by a system.
However that is achieved, drivers do require a flag set purely by the
target - they mustn't be tripped up by an add-on module providing itself
as the system's default EMAC.