Generalized handling of dns servers when brought up with both ipv4 and
ipv6 addresses. Falls back to google dns servers if not dns server is
found through dhcp.
Also added support for the `add_dns_server` method to lwip to support
custom servers.
Despite being able to buffer an arbitrary stream of data,
TCP send is still limited by the available buffer space in the
network stack. Errors from TCP send are perfectly reasonable
and should be handled by reducing the buffer that is attempted.
These tests could adopt the dynamically sized buffers used for the
packet-pressure tests, however throughput is not an important feature
of these tests.
Printing out dropped packets caused significantly more overhead in the
parallel tests due to increased noise on the network. This noise would
push the tests past their provided timeouts.
Dynamic buffers gives the network stack the maximum throughput while
still supporting smaller devices. This should expose the largest number
of issues across differently sized platforms.
Additionally, restructured the UDP tests to avoid unintentionally flooding
the recieving side with bad data after failed packets.
Also, added a bit more documentation
A larger buffer gives the network stack the best options for maximizing
throughput. However, the initial buffer size did not fit on small
targets. Resized 8192 -> 1024.
Added test for the pattern of packets used during the DTLS
handshake. This pattern (5x ~300 byte packets) has been very
problematic for new network interfaces.
Attempt to maximize the devices bandwidth with an exponentially growing
transaction of random sequences. Also prints the time taken and bandwidth
reached during the tests.
condition posix error mbed error
good host, closed port ECONNREFUSED NSAPI_ERROR_NO_CONNECTION
bad host EHOSTUNREACH NSAPI_ERROR_NO_CONNECTION
bad network ENETUNREACH NSAPI_ERROR_NO_CONNECTION
cd60f73 Merge branch 'mbed-os-lwip-rc2-maint' into mbed-os-lwip-rc2-maint-prefixed
3a50479 fixed bug #49676 (Possible endless loop when parsing dhcp options) & added unit test for that
git-subtree-dir: features/FEATURE_LWIP/lwip-interface/lwip
git-subtree-split: cd60f73f110829e00df46593fea5db26bcfb1662
Previously, exhausting hardware buffers would begin blocking the lwip
thread. This patch changes the emac layer to simply drop ethernet
frames, leaving recovery up to a higher level protocol.
This is consistent with the behaviour of the emac layer when unable
to allocate dynamic memory.
- cc.h@57,1: "BYTE_ORDER" redefined
- lwip_inet_chksum.c@560,44: passing argument 1 of 'thumb2_checksum'
discards 'const' qualifier from pointer target type
- lwip_pbuf.c@1172,9: variable 'err' set but not used
- SocketAddress.cpp@293,1: control reaches end of non-void function
This was actually several bugs colluding together.
1. Confusion on the buffer-semaphore paradigm used led to misuse of the
tx semaphore and potential for odd behaviour.
2. Equality tests on tx_consume_index and tx_produce_index did not
handle overflow correctly. This would allow tx_consume_index to catch
up to tx_produce_index and trick the k64f_rx_reclaim function into
forgetting about a whole buffer of pbufs.
3. On top of all of that, the ENET_BUFFDESCRIPTOR_TX_READ_MASK was not
correctly read immediately after being set due to either a compiler
optimization or hardware delays. This caused k64f_low_level_output
to eagerly overrun existing buff-descriptors before they had been
completely sent. Adopting the counting-semaphore paradigm for 1 avoided
this concern.
As pointed out by @infinnovation, the overflow only occurs in the rare
case that the 120MHz CPU can actually generate packets faster than the
ENET hardware can transmit on a 100Mbps link.