- Added a bool return status to LoRaPHY::compute_*_win_params(...) methods. Currently, failed status returned if the rx slot type is invalid or rf frequency is invalid
- Updated Class B implementation to check return status
- Initialize Class B configuration
- Implement class B receiver configuration
- For regions such as US915 with derived rx_config(), changes to the base class implementation makes the derivation unnecessary , so these region specific versions have been removed
The application can use add_device_time_request() API to attach
DeviceTimeRequest mac command for the next outgoing packet.
It is a non-stick mac command, so if there is no response, the app can
retry. The API indicates if the mac command was queued successfully or
not. The actual indication of successful time and date update will come
through an event 'DEVICE_TIME_SYNCHED'.
DevTimeAns mac command will carry number of seconds since the GPS epoch
in the first four bytes and the fifth byte is the fractional part.
After extracting the time from the command fields, we need to adjust
this time according to the unix time, so we add the Unix to GPS time
diff to it. After that we account for leap seconds and set the time
using standard set_time() call.
We have removed the method time_received() fom LoRaPHY as it is not
important nor required. It doesn't fit into the LoRaPHY context.
Stubs are therefore updated to reflect the change.
mbed_lib.json now contains the configurable parameters for TAI to UTC
and GPS TAI to UTC differences in seconds needed for leap second
correction. They are loaded with values as of 2018.
Double precision may introduce unwanted results and it's impact is
massive on microcontrollers. So we change the precision from double to
float.
This change doesn't seem to enhance performance yet.
BE to LE fixes, missing MLME types added
LoRaWAN 1.1 Features added (Some LoRaPhy impl missing still + some TODOs in code)
- MLME confirm handling refactored
- Rejoin handling missing
- new CF_LIST mechanism missing (+resets involved)
- NVM handling missing
Rejoin logic added
In AU/CN/US PHY, RX1 slot frequency is calculated in rx_config().
Since the caller is printing it to log, modify the frequency in
parameter structure so that the correct value will be printed.
We provide now downlink channel frequency and time on air for the
received frame in the RX metadata.
Previously the channel information in both TX and RX metada contained
the index number of the channel. That information wasn't very useful
except the index numbers of default channels. To make more sense of the
meta data, we now store the channel frequency in the channel parameter
rather than the index number of the channel.
RX time on air is collected from the radio driver and it is assumed that
the downlink frame had 8 downlink preamble symbols (plus 4.25 of the
preambles added by the chip) for LoRa modulation.
This commit also include a bit of tidying of RX frequency storage in rx
configuration parameters storage. Previously we were missing filling in
the RX1 frequency correctly.
A bug while setting up RX start timers would result in premature closusre
of RX2 window. The 'ack_Timeout_timer' would be invoked prematurely and
at that time RX2 window may be being demodulating. This resulted in
massive instability with any test that relied on Confirmed traffic or
lower data rates.
To fix the issue, we must know the length of the RX window in
milliseconds and for this purpose we have extended the
'get_rx_window_params(...)' API. The length of the time the window
may remain open must be accounted for while setting up
'ack_timeout_timer'.
While calculating ack timeout, we were ending up getting a random value
which may become less than 2 seconds. This is not allowed as per v1.0.2
specification.
To fix the issue we now take the random number from 0 to 2000 ms and
then add that to the fixed 2000 ms ack timeout value, guaranteeing a
value at least equal to 2000 ms.
In a specific branch path 'adr_settings' in link_adr_request() API, the
structure adr_settings of type link_adr_params_t will be rendered
uninitialized. To prevent this we initialize the construct as zero.
In addition to that, to handle the case properly we should check for the
command identifier and the command payload length anticipating contiguous
blocks of adr commands. If we find a discrepency in size, we should
abort.
Adding group identidier so that LoRaWANInterface class goes to the class
hierarchy section rather than data-structures.
Adding missing documentation for a couple of public functions.
Adding \code and \endcode modifiers for the example code in the
documentation.
Adding compile time NO_DOXYGEN flag for the implementations of the
LoRaPHY Class.
Adding documentation for some of the private structures.
Randomizing backoff by 200ms to 1000ms for Join Requests in a dense
network will add robustness and better chances of reception by the base
station especially in cases of catastrophic network outage and
reconnection.
A new algorithm has been taken in use to calculate the receive window
length and the timing offset involved in opening of the said receive
window. This algorithm performs better than the stock algorthm and
consumes less power.
Previously, we weren't filling in RX1 frequecny in rx_window1_config
structure. However, everything worked as in LoRaPHY::rx_config() API
there was a check which filled in correct RX1 frequency.
Now we are filling in RX1 freq. properly while we are computing
parameters for RX1 window.
LinkADRReq mac command can be used by the network server to set a
certain level of QOS using NbTrans field which is applicable to
Unconfirmed traffic only for 1.0.2 spec.
This commit introduces mechanisms to facilitate this QOS. It means to
repeat an outgoing unconfirmed message NbTrans times without changing
its frame counter.
For class C, we have retired the ack_expiry_timer_for_class_c and have
replaced it with another timer which mimics the RX2 closure as in Class
A but doesn't actually close RX2 window. It's just a mechanism by which
the state machine is informed that the you can proceed forward, we have
not received anything in RX2 window either. This is needed as RX2
doesn't timeout in class C (i.e., the radio remains in continuous mode).
In addition to that we need to close any pending timers for Receive
windows after the MIC has passed and the Duplicate counter check has
also been passed.
Previously, we weren't filling in RX1 frequecny in rx_window1_config
structure. However, everything worked as in LoRaPHY::rx_config() API
there was a check which filled in correct RX1 frequency.
Now we are filling in RX1 freq. properly while we are computing
parameters for RX1 window.
LinkADRReq mac command can be used by the network server to set a
certain level of QOS using NbTrans field which is applicable to
Unconfirmed traffic only for 1.0.2 spec.
This commit introduces mechanisms to facilitate this QOS. It means to
repeat an outgoing unconfirmed message NbTrans times without changing
its frame counter.
For class C, we have retired the ack_expiry_timer_for_class_c and have
replaced it with another timer which mimics the RX2 closure as in Class
A but doesn't actually close RX2 window. It's just a mechanism by which
the state machine is informed that the you can proceed forward, we have
not received anything in RX2 window either. This is needed as RX2
doesn't timeout in class C (i.e., the radio remains in continuous mode).
In addition to that we need to close any pending timers for Receive
windows after the MIC has passed and the Duplicate counter check has
also been passed.
set_next_channel() is the base function provided by LoRaPHY class and should be overridden
by the PHYs who behave differently as compared to EU868 like PHY layers.
CN470 PHY had been missing such an override.
In addition to that we have provided a parameter "fsb-mask-china" that can be used to
enforce a custom frequency sub-band of operation as most of the base stations in the market
may not support all 96 channels. Such a strategy will help in rapid network acquisition.
This phy implementation was just to support a single sub-band in US region.
As we have decided to make FSBs configurable, we do not need this class anymore.
Just like US915 PHY, user can define a custom FSB mask for AU915 PHY.
This helps deployments where base stations do not portray full feature
channel sets and choose to stick with sub-bands.