K64F: Update the DSPI SDK driver to support the new API to change DUMMY_DATA

Signed-off-by: Mahadevan Mahesh <Mahesh.Mahadevan@nxp.com>
pull/4805/head
Mahadevan Mahesh 2017-07-24 15:26:13 -05:00
parent d5108e5a7a
commit cb95458c44
4 changed files with 480 additions and 221 deletions

View File

@ -1,32 +1,32 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved. * Copyright 2016-2017 NXP
* *
* Redistribution and use in source and binary forms, with or without modification, * Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met: * are permitted provided that the following conditions are met:
* *
* o Redistributions of source code must retain the above copyright notice, this list * o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer. * of conditions and the following disclaimer.
* *
* o Redistributions in binary form must reproduce the above copyright notice, this * o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or * list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution. * other materials provided with the distribution.
* *
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its * o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this * contributors may be used to endorse or promote products derived from this
* software without specific prior written permission. * software without specific prior written permission.
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "fsl_dspi.h" #include "fsl_dspi.h"
@ -65,27 +65,27 @@ static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pc
/*! /*!
* @brief Master fill up the TX FIFO with data. * @brief Master fill up the TX FIFO with data.
* This is not a public API as it is called from other driver functions. * This is not a public API.
*/ */
static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle); static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle);
/*! /*!
* @brief Master finish up a transfer. * @brief Master finish up a transfer.
* It would call back if there is callback function and set the state to idle. * It would call back if there is callback function and set the state to idle.
* This is not a public API as it is called from other driver functions. * This is not a public API.
*/ */
static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle); static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle);
/*! /*!
* @brief Slave fill up the TX FIFO with data. * @brief Slave fill up the TX FIFO with data.
* This is not a public API as it is called from other driver functions. * This is not a public API.
*/ */
static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle); static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle);
/*! /*!
* @brief Slave finish up a transfer. * @brief Slave finish up a transfer.
* It would call back if there is callback function and set the state to idle. * It would call back if there is callback function and set the state to idle.
* This is not a public API as it is called from other driver functions. * This is not a public API.
*/ */
static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle); static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle);
@ -100,7 +100,7 @@ static void DSPI_CommonIRQHandler(SPI_Type *base, void *param);
/*! /*!
* @brief Master prepare the transfer. * @brief Master prepare the transfer.
* Basically it set up dspi_master_handle . * Basically it set up dspi_master_handle .
* This is not a public API as it is called from other driver functions. fsl_dspi_edma.c also call this function. * This is not a public API.
*/ */
static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer); static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer);
@ -129,7 +129,7 @@ static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointers to dspi handles for each instance. */ /*! @brief Pointers to dspi handles for each instance. */
static void *g_dspiHandle[FSL_FEATURE_SOC_DSPI_COUNT]; static void *g_dspiHandle[ARRAY_SIZE(s_dspiBases)];
/*! @brief Pointer to master IRQ handler for each instance. */ /*! @brief Pointer to master IRQ handler for each instance. */
static dspi_master_isr_t s_dspiMasterIsr; static dspi_master_isr_t s_dspiMasterIsr;
@ -137,6 +137,8 @@ static dspi_master_isr_t s_dspiMasterIsr;
/*! @brief Pointer to slave IRQ handler for each instance. */ /*! @brief Pointer to slave IRQ handler for each instance. */
static dspi_slave_isr_t s_dspiSlaveIsr; static dspi_slave_isr_t s_dspiSlaveIsr;
/* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
volatile uint8_t s_dummyData[ARRAY_SIZE(s_dspiBases)] = {0};
/********************************************************************************************************************** /**********************************************************************************************************************
* Code * Code
*********************************************************************************************************************/ *********************************************************************************************************************/
@ -145,7 +147,7 @@ uint32_t DSPI_GetInstance(SPI_Type *base)
uint32_t instance; uint32_t instance;
/* Find the instance index from base address mappings. */ /* Find the instance index from base address mappings. */
for (instance = 0; instance < FSL_FEATURE_SOC_DSPI_COUNT; instance++) for (instance = 0; instance < ARRAY_SIZE(s_dspiBases); instance++)
{ {
if (s_dspiBases[instance] == base) if (s_dspiBases[instance] == base)
{ {
@ -153,11 +155,17 @@ uint32_t DSPI_GetInstance(SPI_Type *base)
} }
} }
assert(instance < FSL_FEATURE_SOC_DSPI_COUNT); assert(instance < ARRAY_SIZE(s_dspiBases));
return instance; return instance;
} }
void DSPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
{
uint32_t instance = DSPI_GetInstance(base);
s_dummyData[instance] = dummyData;
}
void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz) void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{ {
assert(masterConfig); assert(masterConfig);
@ -202,6 +210,7 @@ void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, u
DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz, DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz,
masterConfig->ctarConfig.betweenTransferDelayInNanoSec); masterConfig->ctarConfig.betweenTransferDelayInNanoSec);
DSPI_SetDummyData(base, DSPI_DUMMY_DATA);
DSPI_StartTransfer(base); DSPI_StartTransfer(base);
} }
@ -262,6 +271,8 @@ void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)
SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) | SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) |
SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha); SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha);
DSPI_SetDummyData(base, DSPI_DUMMY_DATA);
DSPI_StartTransfer(base); DSPI_StartTransfer(base);
} }
@ -582,7 +593,7 @@ status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)
uint16_t wordToSend = 0; uint16_t wordToSend = 0;
uint16_t wordReceived = 0; uint16_t wordReceived = 0;
uint8_t dummyData = DSPI_DUMMY_DATA; uint8_t dummyData = s_dummyData[DSPI_GetInstance(base)];
uint8_t bitsPerFrame; uint8_t bitsPerFrame;
uint32_t command; uint32_t command;
@ -897,13 +908,10 @@ status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *ha
handle->state = kDSPI_Busy; handle->state = kDSPI_Busy;
DSPI_MasterTransferPrepare(base, handle, transfer); DSPI_MasterTransferPrepare(base, handle, transfer);
DSPI_StartTransfer(base);
/* Enable the NVIC for DSPI peripheral. */ /* Enable the NVIC for DSPI peripheral. */
EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]); EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
DSPI_MasterTransferFillUpTxFifo(base, handle);
/* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt /* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt
* Since SPI is a synchronous interface, we only need to enable the RX interrupt. * Since SPI is a synchronous interface, we only need to enable the RX interrupt.
* The IRQ handler will get the status of RX and TX interrupt flags. * The IRQ handler will get the status of RX and TX interrupt flags.
@ -911,7 +919,10 @@ status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *ha
s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ; s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ;
DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable); DSPI_EnableInterrupts(base, kDSPI_RxFifoDrainRequestInterruptEnable);
DSPI_StartTransfer(base);
/* Fill up the Tx FIFO to trigger the transfer. */
DSPI_MasterTransferFillUpTxFifo(base, handle);
return kStatus_Success; return kStatus_Success;
} }
@ -952,13 +963,12 @@ static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *ha
status = kStatus_Success; status = kStatus_Success;
} }
handle->state = kDSPI_Idle;
if (handle->callback) if (handle->callback)
{ {
handle->callback(base, handle, status, handle->userData); handle->callback(base, handle, status, handle->userData);
} }
/* The transfer is complete.*/
handle->state = kDSPI_Idle;
} }
static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle) static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle)
@ -966,7 +976,7 @@ static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t
assert(handle); assert(handle);
uint16_t wordToSend = 0; uint16_t wordToSend = 0;
uint8_t dummyData = DSPI_DUMMY_DATA; uint8_t dummyData = s_dummyData[DSPI_GetInstance(base)];
/* If bits/frame is greater than one byte */ /* If bits/frame is greater than one byte */
if (handle->bitsPerFrame > 8) if (handle->bitsPerFrame > 8)
@ -1257,11 +1267,6 @@ status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *hand
DSPI_FlushFifo(base, true, true); DSPI_FlushFifo(base, true, true);
DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag); DSPI_ClearStatusFlags(base, kDSPI_AllStatusFlag);
DSPI_StartTransfer(base);
/* Prepare data to transmit */
DSPI_SlaveTransferFillUpTxFifo(base, handle);
s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ; s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ;
/* Enable RX FIFO drain request, the slave only use this interrupt */ /* Enable RX FIFO drain request, the slave only use this interrupt */
@ -1278,6 +1283,11 @@ status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *hand
DSPI_EnableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable); DSPI_EnableInterrupts(base, kDSPI_TxFifoUnderflowInterruptEnable);
} }
DSPI_StartTransfer(base);
/* Prepare data to transmit */
DSPI_SlaveTransferFillUpTxFifo(base, handle);
return kStatus_Success; return kStatus_Success;
} }
@ -1306,7 +1316,7 @@ static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *
assert(handle); assert(handle);
uint16_t transmitData = 0; uint16_t transmitData = 0;
uint8_t dummyPattern = DSPI_DUMMY_DATA; uint8_t dummyPattern = s_dummyData[DSPI_GetInstance(base)];
/* Service the transmitter, if transmit buffer provided, transmit the data, /* Service the transmitter, if transmit buffer provided, transmit the data,
* else transmit dummy pattern * else transmit dummy pattern
@ -1413,12 +1423,12 @@ static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *hand
status = kStatus_Success; status = kStatus_Success;
} }
handle->state = kDSPI_Idle;
if (handle->callback) if (handle->callback)
{ {
handle->callback(base, handle, status, handle->userData); handle->callback(base, handle, status, handle->userData);
} }
handle->state = kDSPI_Idle;
} }
void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle) void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)
@ -1440,7 +1450,7 @@ void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)
{ {
assert(handle); assert(handle);
uint8_t dummyPattern = DSPI_DUMMY_DATA; uint8_t dummyPattern = s_dummyData[DSPI_GetInstance(base)];
uint32_t dataReceived; uint32_t dataReceived;
uint32_t dataSend = 0; uint32_t dataSend = 0;
@ -1617,7 +1627,7 @@ static void DSPI_CommonIRQHandler(SPI_Type *base, void *param)
} }
} }
#if (FSL_FEATURE_SOC_DSPI_COUNT > 0) #if defined(SPI0)
void SPI0_DriverIRQHandler(void) void SPI0_DriverIRQHandler(void)
{ {
assert(g_dspiHandle[0]); assert(g_dspiHandle[0]);
@ -1625,7 +1635,7 @@ void SPI0_DriverIRQHandler(void)
} }
#endif #endif
#if (FSL_FEATURE_SOC_DSPI_COUNT > 1) #if defined(SPI1)
void SPI1_DriverIRQHandler(void) void SPI1_DriverIRQHandler(void)
{ {
assert(g_dspiHandle[1]); assert(g_dspiHandle[1]);
@ -1633,7 +1643,7 @@ void SPI1_DriverIRQHandler(void)
} }
#endif #endif
#if (FSL_FEATURE_SOC_DSPI_COUNT > 2) #if defined(SPI2)
void SPI2_DriverIRQHandler(void) void SPI2_DriverIRQHandler(void)
{ {
assert(g_dspiHandle[2]); assert(g_dspiHandle[2]);
@ -1641,7 +1651,7 @@ void SPI2_DriverIRQHandler(void)
} }
#endif #endif
#if (FSL_FEATURE_SOC_DSPI_COUNT > 3) #if defined(SPI3)
void SPI3_DriverIRQHandler(void) void SPI3_DriverIRQHandler(void)
{ {
assert(g_dspiHandle[3]); assert(g_dspiHandle[3]);
@ -1649,7 +1659,7 @@ void SPI3_DriverIRQHandler(void)
} }
#endif #endif
#if (FSL_FEATURE_SOC_DSPI_COUNT > 4) #if defined(SPI4)
void SPI4_DriverIRQHandler(void) void SPI4_DriverIRQHandler(void)
{ {
assert(g_dspiHandle[4]); assert(g_dspiHandle[4]);
@ -1657,7 +1667,7 @@ void SPI4_DriverIRQHandler(void)
} }
#endif #endif
#if (FSL_FEATURE_SOC_DSPI_COUNT > 5) #if defined(SPI5)
void SPI5_DriverIRQHandler(void) void SPI5_DriverIRQHandler(void)
{ {
assert(g_dspiHandle[5]); assert(g_dspiHandle[5]);

View File

@ -1,6 +1,6 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved. * Copyright 2016-2017 NXP
* *
* Redistribution and use in source and binary forms, with or without modification, * Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met: * are permitted provided that the following conditions are met:
@ -12,7 +12,7 @@
* list of conditions and the following disclaimer in the documentation and/or * list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution. * other materials provided with the distribution.
* *
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its * o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this * contributors may be used to endorse or promote products derived from this
* software without specific prior written permission. * software without specific prior written permission.
* *
@ -37,15 +37,14 @@
* @{ * @{
*/ */
/********************************************************************************************************************** /**********************************************************************************************************************
* Definitions * Definitions
*********************************************************************************************************************/ *********************************************************************************************************************/
/*! @name Driver version */ /*! @name Driver version */
/*@{*/ /*@{*/
/*! @brief DSPI driver version 2.1.3. */ /*! @brief DSPI driver version 2.2.0. */
#define FSL_DSPI_DRIVER_VERSION (MAKE_VERSION(2, 1, 3)) #define FSL_DSPI_DRIVER_VERSION (MAKE_VERSION(2, 2, 0))
/*@}*/ /*@}*/
#ifndef DSPI_DUMMY_DATA #ifndef DSPI_DUMMY_DATA
@ -107,7 +106,8 @@ typedef enum _dspi_master_slave_mode
} dspi_master_slave_mode_t; } dspi_master_slave_mode_t;
/*! /*!
* @brief DSPI Sample Point: Controls when the DSPI master samples SIN in the Modified Transfer Format. This field is valid * @brief DSPI Sample Point: Controls when the DSPI master samples SIN in the Modified Transfer Format. This field is
* valid
* only when the CPHA bit in the CTAR register is 0. * only when the CPHA bit in the CTAR register is 0.
*/ */
typedef enum _dspi_master_sample_point typedef enum _dspi_master_sample_point
@ -217,7 +217,8 @@ enum _dspi_transfer_config_flag_for_master
kDSPI_MasterPcs5 = 5U << DSPI_MASTER_PCS_SHIFT, /*!< DSPI master transfer use PCS5 signal. */ kDSPI_MasterPcs5 = 5U << DSPI_MASTER_PCS_SHIFT, /*!< DSPI master transfer use PCS5 signal. */
kDSPI_MasterPcsContinuous = 1U << 20, /*!< Indicates whether the PCS signal is continuous. */ kDSPI_MasterPcsContinuous = 1U << 20, /*!< Indicates whether the PCS signal is continuous. */
kDSPI_MasterActiveAfterTransfer = 1U << 21, /*!< Indicates whether the PCS signal is active after the last frame transfer.*/ kDSPI_MasterActiveAfterTransfer =
1U << 21, /*!< Indicates whether the PCS signal is active after the last frame transfer.*/
}; };
#define DSPI_SLAVE_CTAR_SHIFT (0U) /*!< DSPI slave CTAR shift macro; used internally. */ #define DSPI_SLAVE_CTAR_SHIFT (0U) /*!< DSPI slave CTAR shift macro; used internally. */
@ -370,7 +371,8 @@ struct _dspi_master_handle
uint8_t fifoSize; /*!< FIFO dataSize. */ uint8_t fifoSize; /*!< FIFO dataSize. */
volatile bool isPcsActiveAfterTransfer; /*!< Indicates whether the PCS signal is active after the last frame transfer.*/ volatile bool
isPcsActiveAfterTransfer; /*!< Indicates whether the PCS signal is active after the last frame transfer.*/
volatile bool isThereExtraByte; /*!< Indicates whether there are extra bytes.*/ volatile bool isThereExtraByte; /*!< Indicates whether there are extra bytes.*/
uint8_t *volatile txData; /*!< Send buffer. */ uint8_t *volatile txData; /*!< Send buffer. */
@ -575,6 +577,7 @@ static inline void DSPI_ClearStatusFlags(SPI_Type *base, uint32_t statusFlags)
* *
* This function configures the various interrupt masks of the DSPI. The parameters are a base and an interrupt mask. * This function configures the various interrupt masks of the DSPI. The parameters are a base and an interrupt mask.
* Note, for Tx Fill and Rx FIFO drain requests, enable the interrupt request and disable the DMA request. * Note, for Tx Fill and Rx FIFO drain requests, enable the interrupt request and disable the DMA request.
* Do not use this API(write to RSER register) while DSPI is in running state.
* *
* @code * @code
* DSPI_EnableInterrupts(base, kDSPI_TxCompleteInterruptEnable | kDSPI_EndOfQueueInterruptEnable ); * DSPI_EnableInterrupts(base, kDSPI_TxCompleteInterruptEnable | kDSPI_EndOfQueueInterruptEnable );
@ -950,10 +953,12 @@ static inline uint32_t DSPI_MasterGetFormattedCommand(dspi_command_data_config_t
* @brief Writes a 32-bit data word (16-bit command appended with 16-bit data) into the data * @brief Writes a 32-bit data word (16-bit command appended with 16-bit data) into the data
* buffer master mode and waits till complete to return. * buffer master mode and waits till complete to return.
* *
* In this function, the user must append the 16-bit data to the 16-bit command information and then provide the total 32-bit word * In this function, the user must append the 16-bit data to the 16-bit command information and then provide the total
* 32-bit word
* as the data to send. * as the data to send.
* The command portion provides characteristics of the data, such as the optional continuous chip select operation * The command portion provides characteristics of the data, such as the optional continuous chip select operation
* between transfers, the desired Clock and Transfer Attributes register to use for the associated SPI frame, the desired PCS * between transfers, the desired Clock and Transfer Attributes register to use for the associated SPI frame, the
* desired PCS
* signal to use for the data transfer, whether the current transfer is the last in the queue, and whether to clear the * signal to use for the data transfer, whether the current transfer is the last in the queue, and whether to clear the
* transfer count (normally needed when sending the first frame of a data packet). The user is responsible for * transfer count (normally needed when sending the first frame of a data packet). The user is responsible for
* appending this command with the data to send. This is an example: * appending this command with the data to send. This is an example:
@ -1022,6 +1027,14 @@ static inline uint32_t DSPI_ReadData(SPI_Type *base)
return (base->POPR); return (base->POPR);
} }
/*!
* @brief Set up the dummy data.
*
* @param base DSPI peripheral address.
* @param dummyData Data to be transferred when tx buffer is NULL.
*/
void DSPI_SetDummyData(SPI_Type *base, uint8_t dummyData);
/*! /*!
*@} *@}
*/ */

View File

@ -1,32 +1,32 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved. * Copyright 2016-2017 NXP
* *
* Redistribution and use in source and binary forms, with or without modification, * Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met: * are permitted provided that the following conditions are met:
* *
* o Redistributions of source code must retain the above copyright notice, this list * o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer. * of conditions and the following disclaimer.
* *
* o Redistributions in binary form must reproduce the above copyright notice, this * o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or * list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution. * other materials provided with the distribution.
* *
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its * o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this * contributors may be used to endorse or promote products derived from this
* software without specific prior written permission. * software without specific prior written permission.
* *
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#include "fsl_dspi_edma.h" #include "fsl_dspi_edma.h"
@ -57,7 +57,7 @@ typedef struct _dspi_slave_edma_private_handle
***********************************************************************************************************************/ ***********************************************************************************************************************/
/*! /*!
* @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA. * @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA.
* This is not a public API as it is called from other driver functions. * This is not a public API.
*/ */
static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle, static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
void *g_dspiEdmaPrivateHandle, void *g_dspiEdmaPrivateHandle,
@ -66,7 +66,7 @@ static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle,
/*! /*!
* @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA. * @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA.
* This is not a public API as it is called from other driver functions. * This is not a public API.
*/ */
static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle, static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
void *g_dspiEdmaPrivateHandle, void *g_dspiEdmaPrivateHandle,
@ -89,6 +89,8 @@ extern uint32_t DSPI_GetInstance(SPI_Type *base);
static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT];
/*! @brief Global variable for dummy data value setting. */
extern volatile uint8_t s_dummyData[];
/*********************************************************************************************************************** /***********************************************************************************************************************
* Code * Code
***********************************************************************************************************************/ ***********************************************************************************************************************/
@ -103,7 +105,9 @@ void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base,
{ {
assert(handle); assert(handle);
assert(edmaRxRegToRxDataHandle); assert(edmaRxRegToRxDataHandle);
#if (!(defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET))
assert(edmaTxDataToIntermediaryHandle); assert(edmaTxDataToIntermediaryHandle);
#endif
assert(edmaIntermediaryToTxRegHandle); assert(edmaIntermediaryToTxRegHandle);
/* Zero the handle. */ /* Zero the handle. */
@ -145,9 +149,11 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
return kStatus_DSPI_Busy; return kStatus_DSPI_Busy;
} }
handle->state = kDSPI_Busy;
uint32_t instance = DSPI_GetInstance(base); uint32_t instance = DSPI_GetInstance(base);
uint16_t wordToSend = 0; uint16_t wordToSend = 0;
uint8_t dummyData = DSPI_DUMMY_DATA; uint8_t dummyData = s_dummyData[DSPI_GetInstance(base)];
uint8_t dataAlreadyFed = 0; uint8_t dataAlreadyFed = 0;
uint8_t dataFedMax = 2; uint8_t dataFedMax = 2;
@ -158,9 +164,8 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
edma_transfer_config_t transferConfigA; edma_transfer_config_t transferConfigA;
edma_transfer_config_t transferConfigB; edma_transfer_config_t transferConfigB;
edma_transfer_config_t transferConfigC;
handle->txBuffIfNull = ((uint32_t)DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA; handle->txBuffIfNull = ((uint32_t)dummyData << 8) | dummyData;
dspi_command_data_config_t commandStruct; dspi_command_data_config_t commandStruct;
DSPI_StopTransfer(base); DSPI_StopTransfer(base);
@ -196,20 +201,32 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
handle->remainingReceiveByteCount = transfer->dataSize; handle->remainingReceiveByteCount = transfer->dataSize;
handle->totalByteCount = transfer->dataSize; handle->totalByteCount = transfer->dataSize;
/* This limits the amount of data we can transfer due to the linked channel. /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
* The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
*/ */
uint32_t limited_size = 0;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
limited_size = 32767u;
}
else
{
limited_size = 511u;
}
if (handle->bitsPerFrame > 8) if (handle->bitsPerFrame > 8)
{ {
if (transfer->dataSize > 1022) if (transfer->dataSize > (limited_size << 1u))
{ {
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange; return kStatus_DSPI_OutOfRange;
} }
} }
else else
{ {
if (transfer->dataSize > 511) if (transfer->dataSize > limited_size)
{ {
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange; return kStatus_DSPI_OutOfRange;
} }
} }
@ -217,16 +234,38 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
/*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1)) if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1))
{ {
handle->state = kDSPI_Idle;
return kStatus_InvalidArgument; return kStatus_InvalidArgument;
} }
handle->state = kDSPI_Busy;
DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); DSPI_DisableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback, EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback,
&s_dspiMasterEdmaPrivateHandle[instance]); &s_dspiMasterEdmaPrivateHandle[instance]);
/*
(1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C.
channel_A minor link to channel_B , channel_B minor link to channel_C.
Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer.
channel_A:SPI_POPR to rxData,
channel_B:next txData to handle->command (low 16 bits),
channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data
(handle->lastCommand to SPI_PUSHR).
(2)For DSPI instances with separate RX and TX DMA requests:
Rx DMA request -> channel_A
Tx DMA request -> channel_C -> channel_B .
channel_C major link to channel_B.
So need prepare the first data in "intermediary" before the DMA
transfer and then channel_B is used to prepare the next data to "intermediary"
channel_A:SPI_POPR to rxData,
channel_C: handle->command (32 bits) to SPI_PUSHR,
channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data
(handle->lastCommand to handle->Command).
*/
/*If dspi has separate dma request , prepare the first data in "intermediary" . /*If dspi has separate dma request , prepare the first data in "intermediary" .
else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/ else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
@ -252,6 +291,7 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
wordToSend = ((uint32_t)dummyData << 8) | dummyData; wordToSend = ((uint32_t)dummyData << 8) | dummyData;
} }
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
handle->command = handle->lastCommand;
} }
else /* For all words except the last word , frame > 8bits */ else /* For all words except the last word , frame > 8bits */
{ {
@ -284,6 +324,7 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
if (handle->remainingSendByteCount == 1) if (handle->remainingSendByteCount == 1)
{ {
handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend;
handle->command = handle->lastCommand;
} }
else else
{ {
@ -293,7 +334,6 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
} }
else /*dspi has shared dma request*/ else /*dspi has shared dma request*/
{ {
/* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to
* trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel. * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel.
@ -388,7 +428,7 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
} }
} }
/***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/ /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/
EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel);
transferConfigA.srcAddr = (uint32_t)rxAddr; transferConfigA.srcAddr = (uint32_t)rxAddr;
@ -428,71 +468,7 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MajorInterruptEnable); kEDMA_MajorInterruptEnable);
/***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should /*Calculate the last data : handle->lastCommand*/
write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the
SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */
EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel);
if (handle->remainingSendByteCount > 0)
{
if (handle->txData)
{
transferConfigB.srcAddr = (uint32_t)(handle->txData);
transferConfigB.srcOffset = 1;
}
else
{
transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
transferConfigB.srcOffset = 0;
}
transferConfigB.destAddr = (uint32_t)(&handle->command);
transferConfigB.destOffset = 0;
transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8)
{
transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfigB.minorLoopBytes = 1;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/*already prepared the first data in "intermediary" , so minus 1 */
transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
majorlink , the majorlink would not trigger the channel_C*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1;
}
}
else
{
transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfigB.minorLoopBytes = 2;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/*already prepared the first data in "intermediary" , so minus 1 */
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 - 1;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
* majorlink*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 + 1;
}
}
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
}
/***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to
handle the last data */
EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
if (((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) || if (((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
((((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) || ((((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) && ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) &&
@ -543,8 +519,252 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
} }
} }
/* The feature of GASKET is that the SPI supports 8-bit or 16-bit writes to the PUSH TX FIFO,
* allowing a single write to the command word followed by multiple writes to the transmit word.
* The TX FIFO will save the last command word written, and convert a 8-bit/16-bit write to the
* transmit word into a 32-bit write that pushes both the command word and transmit word into
* the TX FIFO (PUSH TX FIFO Register In Master Mode)
* So, if this feature is supported, we can use use one channel to carry the receive data from
* receive regsiter to user data buffer, use the other channel to carry the data from user data buffer
* to transmit register,and use the scatter/gather function to prepare the last data.
* That is to say, if GASKET feature is supported, we can use only two channels for tansferring data.
*/
#if defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET
/* For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to PUSHR register.
*/
EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) || if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) ||
((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (handle->remainingSendByteCount > 0))) ((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))))
{
transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigB.destAddr = (uint32_t)txAddr;
transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.srcOffset = 0;
transferConfigB.destOffset = 0;
transferConfigB.minorLoopBytes = 4;
transferConfigB.majorLoopCounts = 1;
EDMA_TcdReset(softwareTCD);
EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL);
}
/*User_Send_Buffer(txData) to PUSHR register. */
if (((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) ||
((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8)))
{
if (handle->txData)
{
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/* For DSPI with separate RX and TX DMA requests, one frame data has been carry
* to handle->command, so need to reduce the pointer of txData.
*/
transferConfigB.srcAddr =
(uint32_t)((uint8_t *)(handle->txData) - ((handle->bitsPerFrame <= 8) ? (1U) : (2U)));
transferConfigB.srcOffset = 1;
}
else
{
/* For DSPI with shared RX and TX DMA requests, one or two frame data have been carry
* to PUSHR register, so no need to change the pointer of txData.
*/
transferConfigB.srcAddr = (uint32_t)((uint8_t *)(handle->txData));
transferConfigB.srcOffset = 1;
}
}
else
{
transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
transferConfigB.srcOffset = 0;
}
transferConfigB.destAddr = (uint32_t)txAddr;
transferConfigB.destOffset = 0;
transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8)
{
transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfigB.minorLoopBytes = 1;
transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1;
}
else
{
transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfigB.minorLoopBytes = 2;
transferConfigB.majorLoopCounts = (handle->remainingSendByteCount / 2) - 1;
}
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, softwareTCD);
}
/* If only one word to transmit, only carry the lastcommand. */
else
{
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, NULL);
}
/*Start the EDMA channel_A , channel_C. */
EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle);
EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle);
/* Set the channel link.
* For DSPI instances with shared TX and RX DMA requests, setup channel minor link, first receive data from the
* receive register, and then carry transmit data to PUSHER register.
* For DSPI instance with separate TX and RX DMA requests, there is no need to set up channel link.
*/
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
/*Set channel priority*/
uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel;
uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel;
uint8_t t = 0;
if (channelPriorityLow > channelPriorityHigh)
{
t = channelPriorityLow;
channelPriorityLow = channelPriorityHigh;
channelPriorityHigh = t;
}
edma_channel_Preemption_config_t preemption_config_t;
preemption_config_t.enableChannelPreemption = true;
preemption_config_t.enablePreemptAbility = true;
preemption_config_t.channelPriority = channelPriorityLow;
EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
&preemption_config_t);
preemption_config_t.channelPriority = channelPriorityHigh;
EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t);
/*if there is Rx DMA request , carry the 32bits data (handle->command) to user data first , then link to
channelC to carry the next data to PUSHER register.(txData to PUSHER) */
if (handle->remainingSendByteCount > 0)
{
EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel,
kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel);
}
}
DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
/* Setup control info to PUSHER register. */
*((uint16_t *)&(base->PUSHR) + 1) = (handle->command >> 16U);
#else
/***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should
write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the
SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */
EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel);
/*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to handle->Command*/
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigB.destAddr = (uint32_t) & (handle->command);
transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes;
transferConfigB.srcOffset = 0;
transferConfigB.destOffset = 0;
transferConfigB.minorLoopBytes = 4;
transferConfigB.majorLoopCounts = 1;
EDMA_TcdReset(softwareTCD);
EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL);
}
/*User_Send_Buffer(txData) to intermediary(handle->command)*/
if (((((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame <= 8)) ||
((handle->remainingSendByteCount > 4) && (handle->bitsPerFrame > 8))) &&
(1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) ||
(1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
{
if (handle->txData)
{
transferConfigB.srcAddr = (uint32_t)(handle->txData);
transferConfigB.srcOffset = 1;
}
else
{
transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull);
transferConfigB.srcOffset = 0;
}
transferConfigB.destAddr = (uint32_t)(&handle->command);
transferConfigB.destOffset = 0;
transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes;
if (handle->bitsPerFrame <= 8)
{
transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes;
transferConfigB.minorLoopBytes = 1;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
majorlink , the majorlink would not trigger the channel_C*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1;
}
}
else
{
transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes;
transferConfigB.minorLoopBytes = 2;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 - 2;
}
else
{
/*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is
* majorlink*/
transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2 + 1;
}
}
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, softwareTCD);
EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, false);
}
else
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
}
}
else
{
EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base,
handle->edmaTxDataToIntermediaryHandle->channel, &transferConfigB, NULL);
}
/***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to
handle the last data */
edma_transfer_config_t transferConfigC;
EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel);
/*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data
* (handle->lastCommand) to SPI_PUSHR*/
if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (handle->remainingSendByteCount > 0)))
{ {
transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand); transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand);
transferConfigC.destAddr = (uint32_t)txAddr; transferConfigC.destAddr = (uint32_t)txAddr;
@ -560,7 +780,8 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
} }
if (((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) || if (((handle->remainingSendByteCount > 1) && (handle->bitsPerFrame <= 8)) ||
((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8))) ((handle->remainingSendByteCount > 2) && (handle->bitsPerFrame > 8)) ||
(1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))
{ {
transferConfigC.srcAddr = (uint32_t)(&(handle->command)); transferConfigC.srcAddr = (uint32_t)(&(handle->command));
transferConfigC.destAddr = (uint32_t)txAddr; transferConfigC.destAddr = (uint32_t)txAddr;
@ -570,7 +791,8 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
transferConfigC.srcOffset = 0; transferConfigC.srcOffset = 0;
transferConfigC.destOffset = 0; transferConfigC.destOffset = 0;
transferConfigC.minorLoopBytes = 4; transferConfigC.minorLoopBytes = 4;
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{
if (handle->bitsPerFrame <= 8) if (handle->bitsPerFrame <= 8)
{ {
transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1; transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1;
@ -582,6 +804,15 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, softwareTCD); handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, softwareTCD);
}
else
{
transferConfigC.majorLoopCounts = 1;
EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigC, NULL);
}
EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base, EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, false); handle->edmaIntermediaryToTxRegHandle->channel, false);
} }
@ -653,20 +884,15 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
&preemption_config_t); &preemption_config_t);
} }
/*Set the channel link. /*Set the channel link.*/
For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C.
For DSPI instances with separate RX and TX DMA requests:
Rx DMA request -> channel_A
Tx DMA request -> channel_C -> channel_B . (so need prepare the first data in "intermediary" before the DMA
transfer and then channel_B is used to prepare the next data to "intermediary" ) */
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{ {
/*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB /*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB
to prepare the next 32bits data (User_send_buffer to handle->command) */ to prepare the next 32bits data (txData to handle->command) */
if (handle->remainingSendByteCount > 1) if (handle->remainingSendByteCount > 1)
{ {
EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base, EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base,
handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink,
handle->edmaTxDataToIntermediaryHandle->channel); handle->edmaTxDataToIntermediaryHandle->channel);
} }
@ -686,7 +912,7 @@ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *hand
DSPI_EnableDMA(base, kDSPI_RxDmaEnable); DSPI_EnableDMA(base, kDSPI_RxDmaEnable);
} }
#endif
DSPI_StartTransfer(base); DSPI_StartTransfer(base);
return kStatus_Success; return kStatus_Success;
@ -805,6 +1031,8 @@ status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle
return kStatus_DSPI_Busy; return kStatus_DSPI_Busy;
} }
handle->state = kDSPI_Busy;
uint32_t instance = DSPI_GetInstance(base); uint32_t instance = DSPI_GetInstance(base);
uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT; uint8_t whichCtar = (transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT;
handle->bitsPerFrame = handle->bitsPerFrame =
@ -813,34 +1041,42 @@ status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle
/* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer
* due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame
*/ */
if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) uint32_t limited_size = 0;
if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))
{ {
limited_size = 32767u;
}
else
{
limited_size = 511u;
}
if (handle->bitsPerFrame > 8) if (handle->bitsPerFrame > 8)
{ {
if (transfer->dataSize > 1022) if (transfer->dataSize > (limited_size << 1u))
{ {
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange; return kStatus_DSPI_OutOfRange;
} }
} }
else else
{ {
if (transfer->dataSize > 511) if (transfer->dataSize > limited_size)
{ {
handle->state = kDSPI_Idle;
return kStatus_DSPI_OutOfRange; return kStatus_DSPI_OutOfRange;
} }
} }
}
/*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */
if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1)) if ((handle->bitsPerFrame > 8) && (transfer->dataSize & 0x1))
{ {
handle->state = kDSPI_Idle;
return kStatus_InvalidArgument; return kStatus_InvalidArgument;
} }
EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]); EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]);
handle->state = kDSPI_Busy;
/* Store transfer information */ /* Store transfer information */
handle->txData = transfer->txData; handle->txData = transfer->txData;
handle->rxData = transfer->rxData; handle->rxData = transfer->rxData;
@ -849,7 +1085,7 @@ status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle
handle->totalByteCount = transfer->dataSize; handle->totalByteCount = transfer->dataSize;
uint16_t wordToSend = 0; uint16_t wordToSend = 0;
uint8_t dummyData = DSPI_DUMMY_DATA; uint8_t dummyData = s_dummyData[DSPI_GetInstance(base)];
uint8_t dataAlreadyFed = 0; uint8_t dataAlreadyFed = 0;
uint8_t dataFedMax = 2; uint8_t dataFedMax = 2;
@ -1003,11 +1239,11 @@ status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle
transferConfigC.srcOffset = 0; transferConfigC.srcOffset = 0;
if (handle->bitsPerFrame <= 8) if (handle->bitsPerFrame <= 8)
{ {
handle->txBuffIfNull = DSPI_DUMMY_DATA; handle->txBuffIfNull = dummyData;
} }
else else
{ {
handle->txBuffIfNull = (DSPI_DUMMY_DATA << 8) | DSPI_DUMMY_DATA; handle->txBuffIfNull = ((uint32_t)dummyData << 8) | dummyData;
} }
} }
@ -1106,13 +1342,13 @@ static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle,
DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); DSPI_DisableDMA((dspiEdmaPrivateHandle->base), kDSPI_RxDmaEnable | kDSPI_TxDmaEnable);
dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
if (dspiEdmaPrivateHandle->handle->callback) if (dspiEdmaPrivateHandle->handle->callback)
{ {
dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle, dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle,
kStatus_Success, dspiEdmaPrivateHandle->handle->userData); kStatus_Success, dspiEdmaPrivateHandle->handle->userData);
} }
dspiEdmaPrivateHandle->handle->state = kDSPI_Idle;
} }
void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle) void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle)

View File

@ -1,6 +1,6 @@
/* /*
* Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved. * Copyright 2016-2017 NXP
* *
* Redistribution and use in source and binary forms, with or without modification, * Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met: * are permitted provided that the following conditions are met:
@ -12,7 +12,7 @@
* list of conditions and the following disclaimer in the documentation and/or * list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution. * other materials provided with the distribution.
* *
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its * o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this * contributors may be used to endorse or promote products derived from this
* software without specific prior written permission. * software without specific prior written permission.
* *