mirror of https://github.com/ARMmbed/mbed-os.git
Adding PWM API implementation
parent
62a6bcaeeb
commit
987567ee59
|
@ -95,15 +95,13 @@ typedef enum {
|
|||
/* Pad 3 definitions */
|
||||
MREPEAT(SERCOM_INST_NUM, _SERCOM_PAD_NAME, 3)
|
||||
} SercomPadName;
|
||||
/*
|
||||
|
||||
typedef enum {
|
||||
PWM_1 = 1,
|
||||
PWM_2,
|
||||
PWM_3,
|
||||
PWM_4,
|
||||
PWM_5,
|
||||
PWM_6
|
||||
} PWMName;*/
|
||||
PWM_0 = (0x42002000UL), /**< \brief (TCC0) APB Base Address */
|
||||
PWM_1 = (0x42002400UL), /**< \brief (TCC1) APB Base Address */
|
||||
PWM_2 = (0x42002800UL), /**< \brief (TCC2) APB Base Address */
|
||||
} PWMName;
|
||||
|
||||
|
||||
#define STDIO_UART_TX USBTX
|
||||
#define STDIO_UART_RX USBRX
|
||||
|
|
|
@ -31,7 +31,7 @@ extern const PinMap PinMap_SERCOM_PAD[];
|
|||
extern const PinMap PinMap_SERCOM_PADEx[];
|
||||
|
||||
/************PWM***************/
|
||||
//extern const PinMap PinMap_PWM[];
|
||||
extern const PinMap PinMap_PWM[];
|
||||
|
||||
/**********EXTINT*************/
|
||||
extern const PinMap PinMap_EXTINT[];
|
||||
|
|
|
@ -96,6 +96,27 @@ const PinMap PinMap_SERCOM_PADEx[] = {
|
|||
|
||||
/************PWM***************/
|
||||
const PinMap PinMap_PWM[] = {
|
||||
{PA00, PWM_2, 4},
|
||||
{PA01, PWM_2, 4},
|
||||
{PA04, PWM_0, 4},
|
||||
{PA05, PWM_0, 4},
|
||||
{PA06, PWM_1, 4},
|
||||
{PA07, PWM_1, 4},
|
||||
{PA08, PWM_0, 4},
|
||||
{PA09, PWM_0, 4},
|
||||
{PA12, PWM_2, 4},
|
||||
{PA13, PWM_2, 4},
|
||||
{PA16, PWM_2, 4},
|
||||
{PA17, PWM_2, 4},
|
||||
{PA18, PWM_0, 5},
|
||||
{PA19, PWM_0, 5},
|
||||
{PA22, PWM_0, 5},
|
||||
{PA23, PWM_0, 5},
|
||||
{PA24, PWM_1, 5},
|
||||
{PA25, PWM_1, 5},
|
||||
{PA30, PWM_1, 4},
|
||||
{PA31, PWM_1, 4},
|
||||
|
||||
/* Not connected */
|
||||
{NC , NC , NC}
|
||||
};
|
||||
|
|
|
@ -0,0 +1,97 @@
|
|||
/**
|
||||
* \page asfdoc_sam0_tcc_basic_use_case Quick Start Guide for TCC - Basic
|
||||
*
|
||||
* The supported board list:
|
||||
* - SAM D21/R21/L21 Xplained Pro
|
||||
*
|
||||
* In this use case, the TCC will be used to generate a PWM signal. Here
|
||||
* the pulse width is set to one quarter of the period.
|
||||
* When connect PWM output to LED it makes the LED light. To see the waveform,
|
||||
* you may need an oscilloscope.
|
||||
*
|
||||
* The PWM output is set up as follows:
|
||||
* <table>
|
||||
* <tr><th> Board </td><th> Pin </td><th> Connect to </td></tr>
|
||||
* <tr><td> SAMD21 Xpro </td><td> PB30 </td><td> LED0 </td></tr>
|
||||
* <tr><td> SAMR21 Xpro </td><td> PA19 </td><td> LED0 </td></tr>
|
||||
* <tr><td> SAML21 Xpro </td><td> PB10 </td><td> LED0 </td></tr>
|
||||
* </table>
|
||||
*
|
||||
* The TCC module will be set up as follows:
|
||||
* - GCLK generator 0 (GCLK main) clock source
|
||||
* - Use double buffering write when set top, compare, or pattern through API
|
||||
* - No dithering on the counter or compare
|
||||
* - No prescaler
|
||||
* - Single Slope PWM wave generation
|
||||
* - GCLK reload action
|
||||
* - Don't run in standby
|
||||
* - No fault or waveform extensions
|
||||
* - No inversion of waveform output
|
||||
* - No capture enabled
|
||||
* - Count upward
|
||||
* - Don't perform one-shot operations
|
||||
* - No event input enabled
|
||||
* - No event action
|
||||
* - No event generation enabled
|
||||
* - Counter starts on 0
|
||||
* - Counter top set to 0xFFFF
|
||||
* - Capture compare channel 0 set to 0xFFFF/4
|
||||
*
|
||||
* \section asfdoc_sam0_tcc_basic_use_case_setup Quick Start
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_basic_use_case_prereq Prerequisites
|
||||
* There are no prerequisites for this use case.
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_basic_use_case_setup_code Code
|
||||
*
|
||||
* Add to the main application source file, before any functions:
|
||||
* \snippet conf_quick_start.h definition_pwm
|
||||
*
|
||||
* Add to the main application source file, outside of any functions:
|
||||
* \snippet qs_tcc_basic.c module_inst
|
||||
*
|
||||
* Copy-paste the following setup code to your user application:
|
||||
* \snippet qs_tcc_basic.c setup
|
||||
*
|
||||
* Add to user application initialization (typically the start of \c main()):
|
||||
* \snippet qs_tcc_basic.c setup_init
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_basic_use_case_setup_flow Workflow
|
||||
* -# Create a module software instance structure for the TCC module to store
|
||||
* the TCC driver state while it is in use.
|
||||
* \snippet qs_tcc_basic.c module_inst
|
||||
* \note This should never go out of scope as long as the module is in use.
|
||||
* In most cases, this should be global.
|
||||
*
|
||||
* -# Configure the TCC module.
|
||||
* -# Create a TCC module configuration struct, which can be filled out to
|
||||
* adjust the configuration of a physical TCC peripheral.
|
||||
* \snippet qs_tcc_basic.c setup_config
|
||||
* -# Initialize the TCC configuration struct with the module's default values.
|
||||
* \snippet qs_tcc_basic.c setup_config_defaults
|
||||
* \note This should always be performed before using the configuration
|
||||
* struct to ensure that all values are initialized to known default
|
||||
* settings.
|
||||
*
|
||||
* -# Alter the TCC settings to configure the counter width, wave generation
|
||||
* mode and the compare channel 0 value.
|
||||
* \snippet qs_tcc_basic.c setup_change_config
|
||||
* -# Alter the TCC settings to configure the PWM output on a physical device
|
||||
* pin.
|
||||
* \snippet qs_tcc_basic.c setup_change_config_pwm
|
||||
* -# Configure the TCC module with the desired settings.
|
||||
* \snippet qs_tcc_basic.c setup_set_config
|
||||
* -# Enable the TCC module to start the timer and begin PWM signal generation.
|
||||
* \snippet qs_tcc_basic.c setup_enable
|
||||
*
|
||||
*
|
||||
* \section asfdoc_sam0_tcc_basic_use_case_main Use Case
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_basic_use_case_main_code Code
|
||||
* Copy-paste the following code to your user application:
|
||||
* \snippet qs_tcc_basic.c main
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_basic_use_case_main_flow Workflow
|
||||
* -# Enter an infinite loop while the PWM wave is generated via the TCC module.
|
||||
* \snippet qs_tcc_basic.c main_loop
|
||||
*/
|
|
@ -0,0 +1,103 @@
|
|||
/**
|
||||
* \page asfdoc_sam0_tcc_buffering_use_case Quick Start Guide for TCC - Double Buffering and Circular
|
||||
*
|
||||
* The supported board list:
|
||||
* - SAM D21/R21/L21 Xplained Pro
|
||||
*
|
||||
* In this use case, the TCC will be used to generate a PWM signal. Here
|
||||
* the pulse width alters in one quarter and three quarter of the period.
|
||||
* When connect PWM output to LED it makes the LED light. To see the waveform,
|
||||
* you may need an oscilloscope.
|
||||
*
|
||||
* The PWM output is set up as follows:
|
||||
* <table>
|
||||
* <tr><th> Board </td><th> Pin </td><th> Connect to </td></tr>
|
||||
* <tr><td> SAMD21 Xpro </td><td> PB30 </td><td> LED0 </td></tr>
|
||||
* <tr><td> SAMR21 Xpro </td><td> PA19 </td><td> LED0 </td></tr>
|
||||
* <tr><td> SAML21 Xpro </td><td> PB10 </td><td> LED0 </td></tr>
|
||||
* </table>
|
||||
*
|
||||
* The TCC module will be set up as follows:
|
||||
* - GCLK generator 0 (GCLK main) clock source
|
||||
* - Use double buffering write when set top, compare, or pattern through API
|
||||
* - No dithering on the counter or compare
|
||||
* - Prescaler is set to 1024
|
||||
* - Single Slope PWM wave generation
|
||||
* - GCLK reload action
|
||||
* - Don't run in standby
|
||||
* - No fault or waveform extensions
|
||||
* - No inversion of waveform output
|
||||
* - No capture enabled
|
||||
* - Count upward
|
||||
* - Don't perform one-shot operations
|
||||
* - No event input enabled
|
||||
* - No event action
|
||||
* - No event generation enabled
|
||||
* - Counter starts on 0
|
||||
* - Counter top set to 8000
|
||||
* - Capture compare channel set to 8000/4
|
||||
* - Capture compare channel buffer set to 8000*3/4
|
||||
* - Circular option for compare channel is enabled so that the compare
|
||||
* values keep switching on update condition
|
||||
*
|
||||
* \section asfdoc_sam0_tcc_buffering_use_case_setup Quick Start
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_buffering_use_case_prereq Prerequisites
|
||||
* There are no prerequisites for this use case.
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_buffering_use_case_setup_code Code
|
||||
*
|
||||
* Add to the main application source file, before any functions:
|
||||
* \snippet conf_quick_start_buffering.h definition_pwm
|
||||
*
|
||||
* Add to the main application source file, outside of any functions:
|
||||
* \snippet qs_tcc_buffering.c module_inst
|
||||
*
|
||||
* Copy-paste the following setup code to your user application:
|
||||
* \snippet qs_tcc_buffering.c setup
|
||||
*
|
||||
* Add to user application initialization (typically the start of \c main()):
|
||||
* \snippet qs_tcc_buffering.c setup_init
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_buffering_use_case_setup_flow Workflow
|
||||
* -# Create a module software instance structure for the TCC module to store
|
||||
* the TCC driver state while it is in use.
|
||||
* \snippet qs_tcc_buffering.c module_inst
|
||||
* \note This should never go out of scope as long as the module is in use.
|
||||
* In most cases, this should be global.
|
||||
*
|
||||
* -# Configure the TCC module.
|
||||
* -# Create a TCC module configuration struct, which can be filled out to
|
||||
* adjust the configuration of a physical TCC peripheral.
|
||||
* \snippet qs_tcc_buffering.c setup_config
|
||||
* -# Initialize the TCC configuration struct with the module's default values.
|
||||
* \snippet qs_tcc_buffering.c setup_config_defaults
|
||||
* \note This should always be performed before using the configuration
|
||||
* struct to ensure that all values are initialized to known default
|
||||
* settings.
|
||||
*
|
||||
* -# Alter the TCC settings to configure the counter width, wave generation
|
||||
* mode and the compare channel 0 value.
|
||||
* \snippet qs_tcc_buffering.c setup_change_config
|
||||
* -# Alter the TCC settings to configure the PWM output on a physical device
|
||||
* pin.
|
||||
* \snippet qs_tcc_buffering.c setup_change_config_pwm
|
||||
* -# Configure the TCC module with the desired settings.
|
||||
* \snippet qs_tcc_buffering.c setup_set_config
|
||||
* -# Set to compare buffer value and enable circular of double buffered
|
||||
* compare values.
|
||||
* \snippet qs_tcc_buffering.c setup_set_buffering
|
||||
* -# Enable the TCC module to start the timer and begin PWM signal generation.
|
||||
* \snippet qs_tcc_buffering.c setup_enable
|
||||
*
|
||||
*
|
||||
* \section asfdoc_sam0_tcc_buffering_use_case_main Use Case
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_buffering_use_case_main_code Code
|
||||
* Copy-paste the following code to your user application:
|
||||
* \snippet qs_tcc_buffering.c main
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_buffering_use_case_main_flow Workflow
|
||||
* -# Enter an infinite loop while the PWM wave is generated via the TCC module.
|
||||
* \snippet qs_tcc_buffering.c main_loop
|
||||
*/
|
|
@ -0,0 +1,220 @@
|
|||
/**
|
||||
* \page asfdoc_sam0_tcc_dma_use_case Quick Start Guide for Using DMA with TCC
|
||||
*
|
||||
* The supported board list:
|
||||
* - SAM D21/R21/L21 Xplained Pro
|
||||
*
|
||||
* In this use case, the TCC will be used to generate a PWM signal. Here
|
||||
* the pulse width varies through following values with the help of DMA
|
||||
* transfer: one quarter of the period, half of the period, and three quarters
|
||||
* of the period.
|
||||
* The PWM output can be used to drive an LED. The waveform can also be
|
||||
* viewed using an oscilloscope.
|
||||
* The output signal is also fed back to another TCC channel by event system,
|
||||
* the event stamps are captured and transferred to a buffer by DMA.
|
||||
*
|
||||
* The PWM output is set up as follows:
|
||||
* <table>
|
||||
* <tr><th> Board </td><th> Pin </td><th> Connect to </td></tr>
|
||||
* <tr><td> SAMD21 Xpro </td><td> PB30 </td><td> LED0 </td></tr>
|
||||
* <tr><td> SAMR21 Xpro </td><td> PA19 </td><td> LED0 </td></tr>
|
||||
* <tr><td> SAML21 Xpro </td><td> PB10 </td><td> LED0 </td></tr>
|
||||
* </table>
|
||||
*
|
||||
* The TCC module will be setup as follows:
|
||||
* - GCLK generator 0 (GCLK main) clock source
|
||||
* - Use double buffering write when set top, compare, or pattern through API
|
||||
* - No dithering on the counter or compare
|
||||
* - No prescaler
|
||||
* - Single Slope PWM wave generation
|
||||
* - GCLK reload action
|
||||
* - Don't run in standby
|
||||
* - No fault or waveform extensions
|
||||
* - No inversion of waveform output
|
||||
* - No capture enabled
|
||||
* - Count upward
|
||||
* - Don't perform one-shot operations
|
||||
* - Counter starts on 0
|
||||
* - Counter top set to 0x1000
|
||||
* - Channel 0 (on SAM D21 Xpro) or 3 (on SAM R21 Xpro) is set to
|
||||
* compare and match value 0x1000*3/4 and generate event
|
||||
* - Channel 1 is set to capture on input event
|
||||
*
|
||||
* The event resource of EVSYS module will be setup as follows:
|
||||
* - TCC match capture channel 0 (on SAM D21 Xpro) or 3 (on SAM R21 Xpro) is
|
||||
* selected as event generator
|
||||
* - Event generation is synchronous, with rising edge detected
|
||||
* - TCC match capture channel 1 is the event user
|
||||
*
|
||||
* The DMA resource of DMAC module will be setup as follows:
|
||||
* - Two DMA resources are used
|
||||
* - Both DMA resources use peripheral trigger
|
||||
* - Both DMA resources perform beat transfer on trigger
|
||||
* - Both DMA resources use beat size of 16 bits
|
||||
* - Both DMA resources are configured to transfer three beats and
|
||||
* then repeat again in same buffer
|
||||
* - On DMA resource which controls the compare value
|
||||
* - TCC0 overflow triggers DMA transfer
|
||||
* - The source address increment is enabled
|
||||
* - The destination address is fixed to TCC channel 0 Compare/Capture
|
||||
*register
|
||||
* - On DMA resource which reads the captured value
|
||||
* - TCC0 capture on channel 1 triggers DMA transfer
|
||||
* - The source address is fixed to TCC channel 1 Compare/Capture register
|
||||
* - The destination address increment is enabled
|
||||
* - The captured value is transferred to an array in SRAM
|
||||
*
|
||||
* \section asfdoc_sam0_tcc_dma_use_case_setup Quick Start
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_dma_use_case_prereq Prerequisites
|
||||
* There are no prerequisites for this use case.
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_dma_use_case_setup_code Code
|
||||
*
|
||||
* Add to the main application source file, before any functions, according to
|
||||
* the kit used:
|
||||
* - SAM D21 Xplained Pro.
|
||||
* \snippet samd21_xplained_pro/conf_quick_start_dma.h definition_pwm
|
||||
* \snippet samd21_xplained_pro/conf_quick_start_dma.h definition_feedback
|
||||
* \snippet samd21_xplained_pro/conf_quick_start_dma.h definition_dma_compare_trigger
|
||||
* \snippet samd21_xplained_pro/conf_quick_start_dma.h definition_dma_capture_trigger
|
||||
* - SAM R21 Xplained Pro.
|
||||
* \snippet samr21_xplained_pro/conf_quick_start_dma.h definition_pwm
|
||||
* \snippet samr21_xplained_pro/conf_quick_start_dma.h definition_feedback
|
||||
* \snippet samr21_xplained_pro/conf_quick_start_dma.h definition_dma_compare_trigger
|
||||
* \snippet samr21_xplained_pro/conf_quick_start_dma.h definition_dma_capture_trigger
|
||||
* - SAM L21 Xplained Pro.
|
||||
* \snippet saml21_xplained_pro/conf_quick_start_dma.h definition_pwm
|
||||
* \snippet saml21_xplained_pro/conf_quick_start_dma.h definition_feedback
|
||||
* \snippet saml21_xplained_pro/conf_quick_start_dma.h definition_dma_compare_trigger
|
||||
*
|
||||
* Add to the main application source file, outside of any functions:
|
||||
* \snippet qs_tcc_dma.c module_inst
|
||||
* \snippet qs_tcc_dma.c capture_variables
|
||||
* \snippet qs_tcc_dma.c compare_variables
|
||||
*
|
||||
* Copy-paste the following setup code to your user application:
|
||||
* \snippet qs_tcc_dma.c config_event_for_capture
|
||||
* \snippet qs_tcc_dma.c config_dma_for_capture
|
||||
* \snippet qs_tcc_dma.c config_dma_for_wave
|
||||
* \snippet qs_tcc_dma.c setup
|
||||
*
|
||||
* Add to user application initialization (typically the start of \c main()):
|
||||
* \snippet qs_tcc_dma.c setup_init
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_dma_use_case_setup_flow Workflow
|
||||
* \subsubsection asfdoc_sam0_tcc_dma_use_case_setup_flow_tcc Configure the TCC
|
||||
* -# Create a module software instance structure for the TCC module to store
|
||||
* the TCC driver state while it is in use.
|
||||
* \snippet qs_tcc_dma.c module_inst
|
||||
* \note This should never go out of scope as long as the module is in use.
|
||||
* In most cases, this should be global.
|
||||
* -# Create a TCC module configuration struct, which can be filled out to
|
||||
* adjust the configuration of a physical TCC peripheral.
|
||||
* \snippet qs_tcc_dma.c setup_config
|
||||
* -# Initialize the TCC configuration struct with the module's default values.
|
||||
* \snippet qs_tcc_dma.c setup_config_defaults
|
||||
* \note This should always be performed before using the configuration
|
||||
* struct to ensure that all values are initialized to known default
|
||||
* settings.
|
||||
* -# Alter the TCC settings to configure the counter width, wave generation
|
||||
* mode and the compare channel 0 value.
|
||||
* \snippet qs_tcc_dma.c setup_change_config
|
||||
* -# Alter the TCC settings to configure the PWM output on a physical device
|
||||
* pin.
|
||||
* \snippet qs_tcc_dma.c setup_change_config_pwm
|
||||
* -# Configure the TCC module with the desired settings.
|
||||
* \snippet qs_tcc_dma.c setup_set_config
|
||||
* -# Configure and enable the desired events for the TCC module.
|
||||
* \snippet qs_tcc_dma.c setup_events
|
||||
* \subsubsection asfdoc_sam0_tcc_dma_use_case_setup_flow_event Configure the Event System
|
||||
* Configure the EVSYS module to wire channel 0 event to channel 1.
|
||||
* -# Create an event resource instance.
|
||||
* \snippet qs_tcc_dma.c capture_event_resource
|
||||
* \note This should never go out of scope as long as the resource is in
|
||||
* use. In most cases, this should be global.
|
||||
*
|
||||
* -# Create an event resource configuration struct.
|
||||
* \snippet qs_tcc_dma.c event_setup_1
|
||||
* -# Initialize the event resource configuration struct with default values.
|
||||
* \snippet qs_tcc_dma.c event_setup_2
|
||||
* \note This should always be performed before using the configuration
|
||||
* struct to ensure that all values are initialized to known default
|
||||
* settings.
|
||||
* -# Adjust the event resource configuration to desired values.
|
||||
* \snippet qs_tcc_dma.c event_setup_3
|
||||
* -# Allocate and configure the resource using the configuration structure.
|
||||
* \snippet qs_tcc_dma.c event_setup_4
|
||||
* -# Attach a user to the resource.
|
||||
* \snippet qs_tcc_dma.c event_setup_5
|
||||
* \subsubsection asfdoc_sam0_tcc_dma_use_case_setup_flow_dma_capture Configure the DMA for Capture TCC Channel 1
|
||||
* Configure the DMAC module to obtain captured value from TCC channel 1.
|
||||
* -# Create a DMA resource instance.
|
||||
* \snippet qs_tcc_dma.c capture_dma_resource
|
||||
* \note This should never go out of scope as long as the resource is in
|
||||
* use. In most cases, this should be global.
|
||||
* -# Create a DMA resource configuration struct.
|
||||
* \snippet qs_tcc_dma.c dma_setup_1
|
||||
* -# Initialize the DMA resource configuration struct with default values.
|
||||
* \snippet qs_tcc_dma.c dma_setup_2
|
||||
* \note This should always be performed before using the configuration
|
||||
* struct to ensure that all values are initialized to known default
|
||||
* settings.
|
||||
* -# Adjust the DMA resource configurations.
|
||||
* \snippet qs_tcc_dma.c dma_setup_3
|
||||
* -# Allocate a DMA resource with the configurations.
|
||||
* \snippet qs_tcc_dma.c dma_setup_4
|
||||
* -# Prepare DMA transfer descriptor.
|
||||
* -# Create a DMA transfer descriptor.
|
||||
* \snippet qs_tcc_dma.c capture_dma_descriptor
|
||||
* \note When multiple descriptors are linked, the linked item should
|
||||
* never go out of scope before it is loaded (to DMA Write-Back
|
||||
* memory section). In most cases, if more than one descriptors are
|
||||
* used, they should be global except the very first one.
|
||||
* -# Create a DMA transfer descriptor struct.
|
||||
* -# Create a DMA transfer descriptor configuration structure, which can be
|
||||
* filled out to adjust the configuration of a single DMA transfer.
|
||||
* \snippet qs_tcc_dma.c dma_setup_5
|
||||
* -# Initialize the DMA transfer descriptor configuration struct with
|
||||
* default values.
|
||||
* \snippet qs_tcc_dma.c dma_setup_6
|
||||
* \note This should always be performed before using the configuration
|
||||
* struct to ensure that all values are initialized to known default
|
||||
* settings.
|
||||
* -# Adjust the DMA transfer descriptor configurations.
|
||||
* \snippet qs_tcc_dma.c dma_setup_7
|
||||
* -# Create the DMA transfer descriptor with the given configuration.
|
||||
* \snippet qs_tcc_dma.c dma_setup_8
|
||||
* -# Start DMA transfer job with prepared descriptor.
|
||||
* -# Add the DMA transfer descriptor to the allocated DMA resource.
|
||||
* \snippet qs_tcc_dma.c dma_setup_10
|
||||
* \note When adding multiple descriptors, the last added one is linked
|
||||
* at the end of descriptor queue. If ringed list is needed, just
|
||||
* add the first descriptor again to build the circle.
|
||||
* -# Start the DMA transfer job with the allocated DMA resource and
|
||||
* transfer descriptor.
|
||||
* \snippet qs_tcc_dma.c dma_setup_11
|
||||
* \subsubsection asfdoc_sam0_tcc_dma_use_case_setup_flow_dma_compare Configure the DMA for Compare TCC Channel 0
|
||||
* Configure the DMAC module to update TCC channel 0 compare value.
|
||||
* The flow is similar to last DMA configure step for capture.
|
||||
* -# Allocate and configure the DMA resource.
|
||||
* \snippet qs_tcc_dma.c compare_dma_resource
|
||||
* \snippet qs_tcc_dma.c config_dma_resource_for_wave
|
||||
* -# Prepare DMA transfer descriptor.
|
||||
* \snippet qs_tcc_dma.c compare_dma_descriptor
|
||||
* \snippet qs_tcc_dma.c config_dma_descriptor_for_wave
|
||||
* -# Start DMA transfer job with prepared descriptor.
|
||||
* \snippet qs_tcc_dma.c config_dma_job_for_wave
|
||||
* -# Enable the TCC module to start the timer and begin PWM signal generation.
|
||||
* \snippet qs_tcc_dma.c setup_enable
|
||||
*
|
||||
* \section asfdoc_sam0_tcc_dma_use_case_main Use Case
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_dma_use_case_main_code Code
|
||||
* Copy-paste the following code to your user application:
|
||||
* \snippet qs_tcc_dma.c main
|
||||
*
|
||||
* \subsection asfdoc_sam0_tcc_dma_use_case_main_flow Workflow
|
||||
* -# Enter an infinite loop while the PWM wave is generated via the TCC module.
|
||||
* \snippet qs_tcc_dma.c main_loop
|
||||
*/
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -20,6 +20,8 @@
|
|||
#include "PortNames.h"
|
||||
#include "PeripheralNames.h"
|
||||
#include "gpio_object.h"
|
||||
#include "tc.h"
|
||||
#include "tcc.h"
|
||||
#include "adc.h"
|
||||
#include "extint.h"
|
||||
#include "i2c_master.h"
|
||||
|
@ -72,6 +74,12 @@ struct analogin_s {
|
|||
};
|
||||
|
||||
struct pwmout_s {
|
||||
struct tcc_module tcc;
|
||||
PinName pin;
|
||||
uint32_t period;
|
||||
float duty_cycle;
|
||||
enum gclk_generator clock_source;
|
||||
enum tc_clock_prescaler clock_prescaler;
|
||||
};
|
||||
|
||||
struct i2c_s {
|
||||
|
|
|
@ -23,6 +23,37 @@
|
|||
|
||||
#include "pinmap_function.h"
|
||||
|
||||
struct pwm_pin_channel {
|
||||
PinName pin;
|
||||
PWMName pwm;
|
||||
uint8_t channel_index;
|
||||
};
|
||||
|
||||
static struct pwm_pin_channel pwn_pins[] = {
|
||||
{PA00, PWM_2, 0},
|
||||
{PA01, PWM_2, 1},
|
||||
{PA04, PWM_0, 0},
|
||||
{PA05, PWM_0, 1},
|
||||
{PA06, PWM_1, 0},
|
||||
{PA07, PWM_1, 1},
|
||||
{PA08, PWM_0, 0},
|
||||
{PA09, PWM_0, 1},
|
||||
{PA12, PWM_2, 0},
|
||||
{PA13, PWM_2, 1},
|
||||
{PA16, PWM_2, 0},
|
||||
{PA17, PWM_2, 1},
|
||||
{PA18, PWM_0, 2},
|
||||
{PA19, PWM_0, 3},
|
||||
{PA22, PWM_0, 4},
|
||||
{PA23, PWM_0, 5},
|
||||
{PA24, PWM_1, 2},
|
||||
{PA25, PWM_1, 3},
|
||||
{PA30, PWM_1, 0},
|
||||
{PA31, PWM_1, 1},
|
||||
|
||||
{NC, NC, NC}
|
||||
};
|
||||
|
||||
static uint32_t pinmap_merge_pins(uint32_t a, uint32_t b)
|
||||
{
|
||||
// both are the same (inc both NC)
|
||||
|
@ -218,4 +249,23 @@ uint32_t pinmap_peripheral_sercom(PinName pin, uint32_t sercom_index)
|
|||
return NC;
|
||||
}
|
||||
return sercom_address[(sercom_index&0x0F)];
|
||||
}
|
||||
}
|
||||
|
||||
/** Find the channel index of a pin specific to a PWM instance
|
||||
*
|
||||
* @param[in] pin pin name
|
||||
* @param[in] pwm pwm peripheral (unused now)
|
||||
* @return Channel index of the specified pin
|
||||
*/
|
||||
uint32_t pinmap_channel_pwm(PinName pin, PWMName pwm)
|
||||
{
|
||||
struct pwm_pin_channel *pwm_ch = pwn_pins;
|
||||
|
||||
while (pwm_ch->pin != NC) {
|
||||
if (pin == pwm_ch->pin) {
|
||||
return (uint32_t)pwm_ch->channel_index;
|
||||
}
|
||||
pwm_ch++;
|
||||
}
|
||||
return NC;
|
||||
}
|
||||
|
|
|
@ -75,6 +75,14 @@ uint32_t pinmap_pad_sercom(PinName pin, uint32_t sercom_index);
|
|||
*/
|
||||
uint32_t pinmap_peripheral_sercom(PinName pin, uint32_t sercom_index);
|
||||
|
||||
/** Find the channel index of a pin specific to a PWM instance
|
||||
*
|
||||
* @param[in] pin pin name
|
||||
* @param[in] pwm pwm peripheral (unused now)
|
||||
* @return Channel index of the specified pin
|
||||
*/
|
||||
uint32_t pinmap_channel_pwm(PinName pin, PWMName pwm);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -20,43 +20,195 @@
|
|||
#include "pinmap.h"
|
||||
#include "PeripheralPins.h"
|
||||
|
||||
#include "pinmap_function.h"
|
||||
|
||||
|
||||
#define PWMOUT_CTRL_CHANNEL 3
|
||||
|
||||
const uint32_t tcc_prescaler[] = {
|
||||
TCC_CLOCK_PRESCALER_DIV1,
|
||||
TCC_CLOCK_PRESCALER_DIV2,
|
||||
TCC_CLOCK_PRESCALER_DIV4,
|
||||
TCC_CLOCK_PRESCALER_DIV8,
|
||||
TCC_CLOCK_PRESCALER_DIV16,
|
||||
TCC_CLOCK_PRESCALER_DIV64,
|
||||
TCC_CLOCK_PRESCALER_DIV256,
|
||||
TCC_CLOCK_PRESCALER_DIV1024
|
||||
};
|
||||
|
||||
extern const uint32_t _tcc_maxs[TCC_INST_NUM];
|
||||
|
||||
static void pwmout_set_period(pwmout_t* obj, int period_us)
|
||||
{
|
||||
uint32_t i;
|
||||
uint32_t freq_hz;
|
||||
double us_per_cycle;
|
||||
uint64_t max_period = 0;
|
||||
uint32_t us_period = period_us;
|
||||
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
/* TCC instance index */
|
||||
uint8_t module_index = _tcc_get_inst_index(obj->tcc.hw);
|
||||
|
||||
uint32_t count_max = _tcc_maxs[module_index];
|
||||
|
||||
freq_hz = system_gclk_gen_get_hz(obj->clock_source);
|
||||
|
||||
for (i=0; i<sizeof(tcc_prescaler); i++) {
|
||||
us_per_cycle = 1000000.00 / (freq_hz >> tcc_prescaler[i]);
|
||||
max_period = us_per_cycle * count_max;
|
||||
if (max_period >= us_period) {
|
||||
obj->clock_prescaler = tcc_prescaler[i];
|
||||
obj->period = us_period / us_per_cycle;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void pwmout_init_hw(pwmout_t* obj)
|
||||
{
|
||||
uint32_t mux_func = NC;
|
||||
uint32_t pwm = NC;
|
||||
PinName pin;
|
||||
uint32_t ch_index = NC;
|
||||
struct tcc_config config_tcc;
|
||||
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
pin = obj->pin;
|
||||
pwm = pinmap_peripheral(pin, PinMap_PWM);
|
||||
if (pwm == (uint32_t)NC) return; /* Pin not supported */
|
||||
|
||||
mux_func = pinmap_function(pin, PinMap_PWM);
|
||||
ch_index = pinmap_channel_pwm(pin, pwm);
|
||||
if ((mux_func == (uint32_t)NC) || (ch_index == (uint32_t)NC)) {
|
||||
/* Pin not supported */
|
||||
return;
|
||||
}
|
||||
|
||||
tcc_get_config_defaults(&config_tcc, (Tcc*)pwm);
|
||||
|
||||
config_tcc.counter.clock_source = obj->clock_source;
|
||||
config_tcc.counter.clock_prescaler = obj->clock_prescaler;
|
||||
|
||||
config_tcc.counter.period = obj->period;
|
||||
config_tcc.compare.wave_generation = TCC_WAVE_GENERATION_SINGLE_SLOPE_PWM;
|
||||
config_tcc.compare.match[PWMOUT_CTRL_CHANNEL] = obj->period * obj->duty_cycle;
|
||||
|
||||
config_tcc.pins.enable_wave_out_pin[ch_index] = true;
|
||||
config_tcc.pins.wave_out_pin[ch_index] = pin;
|
||||
config_tcc.pins.wave_out_pin_mux[ch_index] = mux_func;
|
||||
|
||||
tcc_init(&obj->tcc, (Tcc*)pwm, &config_tcc);
|
||||
|
||||
}
|
||||
|
||||
void pwmout_init(pwmout_t* obj, PinName pin)
|
||||
{
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
obj->pin = pin;
|
||||
obj->period = 0xFFFF;
|
||||
obj->duty_cycle = 1;
|
||||
obj->clock_source = GCLK_GENERATOR_0; /* 8Mhz input clock */
|
||||
obj->clock_prescaler = TCC_CLOCK_PRESCALER_DIV8; /* Default to 1MHz for 8Mhz input clock */
|
||||
|
||||
pwmout_init_hw(obj);
|
||||
|
||||
tcc_enable(&obj->tcc);
|
||||
}
|
||||
|
||||
void pwmout_free(pwmout_t* obj)
|
||||
{
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
tcc_disable(&obj->tcc);
|
||||
}
|
||||
|
||||
void pwmout_write(pwmout_t* obj, float value)
|
||||
{
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
if (value < 0.0f) {
|
||||
value = 0;
|
||||
} else if (value > 1.0f) {
|
||||
value = 1;
|
||||
}
|
||||
|
||||
/* Modify the pulse width keeping period same */
|
||||
obj->duty_cycle = value;
|
||||
|
||||
/* Disable PWM Module */
|
||||
tcc_disable(&obj->tcc);
|
||||
|
||||
/* Update the changes */
|
||||
pwmout_init_hw(obj);
|
||||
|
||||
/* Enable PWM Module */
|
||||
tcc_enable(&obj->tcc);
|
||||
|
||||
}
|
||||
|
||||
float pwmout_read(pwmout_t* obj)
|
||||
{
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
return obj->duty_cycle;
|
||||
}
|
||||
|
||||
void pwmout_period(pwmout_t* obj, float seconds)
|
||||
{
|
||||
pwmout_period_us(obj, seconds * 1000000.0f);
|
||||
}
|
||||
|
||||
void pwmout_period_ms(pwmout_t* obj, int ms)
|
||||
{
|
||||
pwmout_period_us(obj, ms * 1000);
|
||||
}
|
||||
|
||||
void pwmout_period_us(pwmout_t* obj, int us)
|
||||
{
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
/* Disable PWM Module */
|
||||
tcc_disable(&obj->tcc);
|
||||
|
||||
/* TODO: Find and set the period */
|
||||
pwmout_set_period(obj, us);
|
||||
|
||||
/* Update the changes */
|
||||
pwmout_init_hw(obj);
|
||||
|
||||
/* Enable PWM Module */
|
||||
tcc_enable(&obj->tcc);
|
||||
}
|
||||
|
||||
void pwmout_pulsewidth(pwmout_t* obj, float seconds)
|
||||
{
|
||||
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
|
||||
}
|
||||
|
||||
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
|
||||
{
|
||||
pwmout_pulsewidth_us(obj, ms * 1000);
|
||||
}
|
||||
|
||||
void pwmout_pulsewidth_us(pwmout_t* obj, int us)
|
||||
{
|
||||
/* Sanity check arguments */
|
||||
MBED_ASSERT(obj);
|
||||
|
||||
/* Find the new duty cycle */
|
||||
double duty_cycle = us / (double)obj->period;
|
||||
|
||||
/* This call updates pulse width as well as period */
|
||||
pwmout_write(obj, duty_cycle);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue