fix - added proper code of cmsis_nvic.c for regular nrf51 target

pull/2943/head
Andrzej Puzdrowski 2016-10-12 09:26:49 +02:00
parent 8302ce0625
commit 9204c6f6a1
1 changed files with 7 additions and 67 deletions

View File

@ -30,74 +30,14 @@
*/
#include "cmsis_nvic.h"
/* In the M0, there is no VTOR. In the LPC range such as the LPC11U,
* whilst the vector table may only be something like 48 entries (192 bytes, 0xC0),
* the SYSMEMREMAP register actually remaps the memory from 0x10000000-0x100001FF
* to adress 0x0-0x1FF. In this case, RAM can be addressed at both 0x10000000 and 0x0
*
* If we just copy the vectors to RAM and switch the SYSMEMMAP, any accesses to FLASH
* above the vector table before 0x200 will actually go to RAM. So we need to provide
* a solution where the compiler gets the right results based on the memory map
*
* Option 1 - We allocate and copy 0x200 of RAM rather than just the table
* - const data and instructions before 0x200 will be copied to and fetched/exec from RAM
* - RAM overhead: 0x200 - 0xC0 = 320 bytes, FLASH overhead: 0
*
* Option 2 - We pad the flash to 0x200 to ensure the compiler doesn't allocate anything there
* - No flash accesses will go to ram, as there will be nothing there
* - RAM only needs to be allocated for the vectors, as all other ram addresses are normal
* - RAM overhead: 0, FLASH overhead: 320 bytes
*
* Option 2 is the one to go for, as RAM is the most valuable resource
*/
extern uint32_t nrf_dispatch_vector[NVIC_NUM_VECTORS];
#define NVIC_RAM_VECTOR_ADDRESS (0x10000000) // Location of vectors in RAM
#define NVIC_FLASH_VECTOR_ADDRESS (0x0) // Initial vector position in flash
/*
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
uint32_t *vectors = (uint32_t*)SCB->VTOR;
uint32_t i;
// Copy and switch to dynamic vectors if the first time called
if (SCB->VTOR == NVIC_FLASH_VECTOR_ADDRESS) {
uint32_t *old_vectors = vectors;
vectors = (uint32_t*)NVIC_RAM_VECTOR_ADDRESS;
for (i=0; i<NVIC_NUM_VECTORS; i++) {
vectors[i] = old_vectors[i];
}
SCB->VTOR = (uint32_t)NVIC_RAM_VECTOR_ADDRESS;
}
vectors[IRQn + 16] = vector;
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
nrf_dispatch_vector[IRQn + NVIC_USER_IRQ_OFFSET] = vector;
}
uint32_t NVIC_GetVector(IRQn_Type IRQn) {
uint32_t *vectors = (uint32_t*)SCB->VTOR;
return vectors[IRQn + 16];
}*/
void NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) {
// int i;
// Space for dynamic vectors, initialised to allocate in R/W
static volatile uint32_t* vectors = (uint32_t*)NVIC_RAM_VECTOR_ADDRESS;
/*
// Copy and switch to dynamic vectors if first time called
if((LPC_SYSCON->SYSMEMREMAP & 0x3) != 0x1) {
uint32_t *old_vectors = (uint32_t *)0; // FLASH vectors are at 0x0
for(i = 0; i < NVIC_NUM_VECTORS; i++) {
vectors[i] = old_vectors[i];
}
LPC_SYSCON->SYSMEMREMAP = 0x1; // Remaps 0x0-0x1FF FLASH block to RAM block
}*/
// Set the vector
vectors[IRQn + 16] = vector;
}
uint32_t NVIC_GetVector(IRQn_Type IRQn) {
// We can always read vectors at 0x0, as the addresses are remapped
uint32_t *vectors = (uint32_t*)0;
// Return the vector
return vectors[IRQn + 16];
uint32_t NVIC_GetVector(IRQn_Type IRQn)
{
return nrf_dispatch_vector[IRQn + NVIC_USER_IRQ_OFFSET];
}