Merge pull request #14245 from jeromecoutant/PR_WL

STM32WL: I2C and ADC full support
pull/14284/head
Martin Kojtal 2021-02-15 08:46:13 +00:00 committed by GitHub
commit 5e094fe040
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 184 additions and 129 deletions

View File

@ -55,11 +55,10 @@ MBED_WEAK const PinMap PinMap_ADC[] = {
{NC, NC, 0} {NC, NC, 0}
}; };
// !!! SECTION TO BE CHECKED WITH DEVICE REFERENCE MANUAL
MBED_WEAK const PinMap PinMap_ADC_Internal[] = { MBED_WEAK const PinMap PinMap_ADC_Internal[] = {
// {ADC_TEMP, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 16, 0)}, {ADC_TEMP, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 12, 0)},
// {ADC_VREF, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 17, 0)}, {ADC_VREF, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 13, 0)},
// {ADC_VBAT, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 18, 0)}, {ADC_VBAT, ADC_1, STM_PIN_DATA_EXT(STM_MODE_ANALOG, GPIO_NOPULL, 0, 14, 0)},
{NC, NC, 0} {NC, NC, 0}
}; };

View File

@ -19,30 +19,35 @@
#include "mbed_assert.h" #include "mbed_assert.h"
#include "mbed_error.h" #include "mbed_error.h"
#include "mbed_debug.h" #include "mbed_debug.h"
#include "mbed_wait_api.h"
#include "cmsis.h" #include "cmsis.h"
#include "pinmap.h" #include "pinmap.h"
#include "PeripheralPins.h" #include "PeripheralPins.h"
void analogin_init(analogin_t *obj, PinName pin)
#if STATIC_PINMAP_READY
#define ANALOGIN_INIT_DIRECT analogin_init_direct
void analogin_init_direct(analogin_t *obj, const PinMap *pinmap)
#else
#define ANALOGIN_INIT_DIRECT _analogin_init_direct
static void _analogin_init_direct(analogin_t *obj, const PinMap *pinmap)
#endif
{ {
uint32_t function = (uint32_t)NC; uint32_t function = (uint32_t)pinmap->function;
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *)pinmap->peripheral;
// ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...) // ADC Internal Channels "pins" (Temperature, Vref, Vbat, ...)
// are described in PinNames.h and PeripheralPins.c // are described in PinNames.h and PeripheralPins.c
// Pin value must be between 0xF0 and 0xFF // Pin value must be between 0xF0 and 0xFF
if ((pin < 0xF0) || (pin >= 0x100)) { if ((pinmap->pin < 0xF0) || (pinmap->pin >= 0x100)) {
// Normal channels // Normal channels
// Get the peripheral name from the pin and assign it to the object
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC);
// Get the functions (adc channel) from the pin and assign it to the object
function = pinmap_function(pin, PinMap_ADC);
// Configure GPIO // Configure GPIO
pinmap_pinout(pin, PinMap_ADC); pin_function(pinmap->pin, pinmap->function);
pin_mode(pinmap->pin, PullNone);
} else { } else {
// Internal channels // Internal channels
obj->handle.Instance = (ADC_TypeDef *)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = pinmap_function(pin, PinMap_ADC_Internal);
// No GPIO configuration for internal channels // No GPIO configuration for internal channels
} }
MBED_ASSERT(obj->handle.Instance != (ADC_TypeDef *)NC); MBED_ASSERT(obj->handle.Instance != (ADC_TypeDef *)NC);
@ -51,58 +56,77 @@ void analogin_init(analogin_t *obj, PinName pin)
obj->channel = STM_PIN_CHANNEL(function); obj->channel = STM_PIN_CHANNEL(function);
// Save pin number for the read function // Save pin number for the read function
obj->pin = pin; obj->pin = pinmap->pin;
// Configure ADC object structures // Configure ADC object structures
obj->handle.State = HAL_ADC_STATE_RESET; obj->handle.State = HAL_ADC_STATE_RESET;
obj->handle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2; // Asynchronous clock mode, input ADC clock obj->handle.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
obj->handle.Init.Resolution = ADC_RESOLUTION_12B; obj->handle.Init.Resolution = ADC_RESOLUTION_12B;
obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT; obj->handle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
obj->handle.Init.ScanConvMode = ADC_SCAN_DISABLE; // Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) obj->handle.Init.ScanConvMode = ADC_SCAN_DISABLE;
obj->handle.Init.EOCSelection = ADC_EOC_SINGLE_CONV; // On STM32L1xx ADC, overrun detection is enabled only if EOC selection is set to each conversion (or transfer by DMA enabled, this is not the case in this example). obj->handle.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
obj->handle.Init.LowPowerAutoWait = DISABLE; obj->handle.Init.LowPowerAutoWait = DISABLE;
obj->handle.Init.ContinuousConvMode = DISABLE; // Continuous mode disabled to have only 1 conversion at each conversion trig obj->handle.Init.ContinuousConvMode = DISABLE;
obj->handle.Init.NbrOfConversion = 1; // Parameter discarded because sequencer is disabled obj->handle.Init.NbrOfConversion = 1;
obj->handle.Init.DiscontinuousConvMode = DISABLE; // Parameter discarded because sequencer is disabled obj->handle.Init.DiscontinuousConvMode = DISABLE;
//obj->handle.Init.NbrOfDiscConversion = 1; // Parameter discarded because sequencer is disabled obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START;
obj->handle.Init.ExternalTrigConv = ADC_SOFTWARE_START; // Software start to trig the 1st conversion manually, without external event
obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; obj->handle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
obj->handle.Init.DMAContinuousRequests = DISABLE; obj->handle.Init.DMAContinuousRequests = DISABLE;
obj->handle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; // DR register is overwritten with the last conversion result in case of overrun obj->handle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
obj->handle.Init.OversamplingMode = DISABLE; // No oversampling obj->handle.Init.LowPowerAutoPowerOff = DISABLE;
obj->handle.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_19CYCLES_5;
obj->handle.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_160CYCLES_5;
obj->handle.Init.OversamplingMode = DISABLE;
obj->handle.Init.Oversampling.Ratio = 0; // workaround
obj->handle.Init.Oversampling.RightBitShift = 0; // workaround
obj->handle.Init.Oversampling.TriggeredMode = 0; // workaround
obj->handle.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
// Enable ADC core clock // Enable ADC clock
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_SYSCLK);
__HAL_RCC_ADC_CLK_ENABLE(); __HAL_RCC_ADC_CLK_ENABLE();
// Enable ADC conversion clock.
// Only necessary with asynchronous clock source
__HAL_RCC_ADC_CONFIG(RCC_ADCCLKSOURCE_SYSCLK);
if (HAL_ADC_Init(&obj->handle) != HAL_OK) { if (HAL_ADC_Init(&obj->handle) != HAL_OK) {
error("ADC initialization failed\r\n"); error("Cannot initialize ADC");
} }
// ADC calibration is done only once // ADC calibration is done only once
//if (!HAL_ADCEx_Calibration_GetValue(&obj->handle, ADC_SINGLE_ENDED)) { if (!HAL_ADCEx_Calibration_GetValue(&obj->handle)) {
// HAL_ADCEx_Calibration_Start(&obj->handle, ADC_SINGLE_ENDED); if (HAL_ADCEx_Calibration_Start(&obj->handle) != HAL_OK) {
//} error("HAL_ADCEx_Calibration_Start error");
}
}
} }
void analogin_init(analogin_t *obj, PinName pin)
{
int peripheral;
int function;
if ((pin < 0xF0) || (pin >= 0x100)) {
peripheral = (int)pinmap_peripheral(pin, PinMap_ADC);
function = (int)pinmap_find_function(pin, PinMap_ADC);
} else {
peripheral = (int)pinmap_peripheral(pin, PinMap_ADC_Internal);
function = (int)pinmap_find_function(pin, PinMap_ADC_Internal);
}
const PinMap static_pinmap = {pin, peripheral, function};
ANALOGIN_INIT_DIRECT(obj, &static_pinmap);
}
uint16_t adc_read(analogin_t *obj) uint16_t adc_read(analogin_t *obj)
{ {
ADC_ChannelConfTypeDef sConfig = {0}; ADC_ChannelConfTypeDef sConfig = {0};
// Configure ADC channel
sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.Rank = ADC_REGULAR_RANK_1;
//sConfig.SamplingTime = ADC_SAMPLETIME_47CYCLES_5; sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
//sConfig.SingleDiff = ADC_SINGLE_ENDED;
//sConfig.OffsetNumber = ADC_OFFSET_NONE;
//sConfig.Offset = 0;
switch (obj->channel) { switch (obj->channel) {
case 0: case 0:
sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Channel = ADC_CHANNEL_0;
//sConfig.SamplingTime = ADC_SAMPLETIME_247CYCLES_5; // Minimum ADC sampling time when reading the internal reference voltage is 4us
break; break;
case 1: case 1:
sConfig.Channel = ADC_CHANNEL_1; sConfig.Channel = ADC_CHANNEL_1;
@ -138,55 +162,41 @@ uint16_t adc_read(analogin_t *obj)
sConfig.Channel = ADC_CHANNEL_11; sConfig.Channel = ADC_CHANNEL_11;
break; break;
case 12: case 12:
sConfig.Channel = ADC_CHANNEL_12; sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_2;
break; break;
case 13: case 13:
sConfig.Channel = ADC_CHANNEL_13; sConfig.Channel = ADC_CHANNEL_VREFINT;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_2;
break; break;
case 14: case 14:
sConfig.Channel = ADC_CHANNEL_14;
break;
case 15:
sConfig.Channel = ADC_CHANNEL_15;
break;
case 16:
sConfig.Channel = ADC_CHANNEL_16;
break;
case 17:
sConfig.Channel = ADC_CHANNEL_TEMPSENSOR;
//sConfig.SamplingTime = ADC_SAMPLETIME_247CYCLES_5; // Minimum ADC sampling time when reading the temperature is 5us
break;
case 18:
sConfig.Channel = ADC_CHANNEL_VBAT; sConfig.Channel = ADC_CHANNEL_VBAT;
//sConfig.SamplingTime = ADC_SAMPLETIME_640CYCLES_5; // Minimum ADC sampling time when reading the VBAT is 12us sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_2;
break; break;
default: default:
return 0; return 0;
} }
if (HAL_ADC_ConfigChannel(&obj->handle, &sConfig) != HAL_OK) { if (HAL_ADC_ConfigChannel(&obj->handle, &sConfig) != HAL_OK) {
debug("ADC channel configuration failed\r\n"); debug("HAL_ADC_ConfigChannel error\n");
} }
// Start conversion
if (HAL_ADC_Start(&obj->handle) != HAL_OK) { if (HAL_ADC_Start(&obj->handle) != HAL_OK) {
debug("ADC start of conversion failed\r\n"); debug("HAL_ADC_Start error\n");
} }
// Wait end of conversion and get value // Wait end of conversion and get value
uint16_t adcValue = 0; uint16_t adcValue = 0;
if (HAL_ADC_PollForConversion(&obj->handle, 10) == HAL_OK) { if (HAL_ADC_PollForConversion(&obj->handle, 100) == HAL_OK) {
adcValue = (uint16_t)HAL_ADC_GetValue(&obj->handle); adcValue = (uint16_t)HAL_ADC_GetValue(&obj->handle);
} }
if (HAL_ADC_Stop(&obj->handle) != HAL_OK) {
debug("HAL_ADC_Stop failed\r\n");
}
LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE((&obj->handle)->Instance), LL_ADC_PATH_INTERNAL_NONE); LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE((&obj->handle)->Instance), LL_ADC_PATH_INTERNAL_NONE);
return adcValue; return adcValue;
} }
const PinMap *analogin_pinmap() const PinMap *analogin_pinmap()
{ {
return PinMap_ADC; return PinMap_ADC;

View File

@ -23,43 +23,88 @@
#include "mbed_error.h" #include "mbed_error.h"
#include "PeripheralPins.h" #include "PeripheralPins.h"
DAC_HandleTypeDef hdac; #if STATIC_PINMAP_READY
#define ANALOGOUT_INIT_DIRECT analogout_init_direct
void analogout_init_direct(dac_t *obj, const PinMap *pinmap)
#else
#define ANALOGOUT_INIT_DIRECT _analogout_init_direct
static void _analogout_init_direct(dac_t *obj, const PinMap *pinmap)
#endif
{
DAC_ChannelConfTypeDef sConfig = {0};
// Get the peripheral name from the pin and assign it to the object
obj->dac = (DACName)pinmap->peripheral;
MBED_ASSERT(obj->dac != (DACName)NC);
// Get the pin function and assign the used channel to the object
uint32_t function = (uint32_t)pinmap->function;
MBED_ASSERT(function != (uint32_t)NC);
switch (STM_PIN_CHANNEL(function)) {
case 1:
obj->channel = DAC_CHANNEL_1;
break;
default:
error("Unknown DAC channel");
break;
}
// Configure GPIO
pin_function(pinmap->pin, pinmap->function);
pin_mode(pinmap->pin, PullNone);
// Save the pin for future use
obj->pin = pinmap->pin;
// Enable DAC clock
__HAL_RCC_DAC_CLK_ENABLE();
// Configure DAC
obj->handle.Instance = DAC;
obj->handle.State = HAL_DAC_STATE_RESET;
if (HAL_DAC_Init(&obj->handle) != HAL_OK) {
error("HAL_DAC_Init failed");
}
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;
sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
if (HAL_DAC_ConfigChannel(&obj->handle, &sConfig, obj->channel) != HAL_OK) {
error("Cannot configure DAC channel\n");
}
analogout_write_u16(obj, 0);
}
void analogout_init(dac_t *obj, PinName pin) void analogout_init(dac_t *obj, PinName pin)
{ {
int peripheral = (int)pinmap_peripheral(pin, PinMap_DAC);
int function = (int)pinmap_find_function(pin, PinMap_DAC);
DAC_ChannelConfTypeDef sConfig = {0}; const PinMap static_pinmap = {pin, peripheral, function};
/* obj Initialization */
obj->dac = (DACName)NC;
obj->pin = pin;
obj->channel = DAC_CHANNEL_1;
/* DAC Initialization */ ANALOGOUT_INIT_DIRECT(obj, &static_pinmap);
hdac.Instance = DAC; }
if (HAL_DAC_Init(&hdac) != HAL_OK)
{ void analogout_free(dac_t *obj)
//Error_Handler(); {
} __HAL_RCC_DAC_FORCE_RESET();
/** DAC channel OUT1 config __HAL_RCC_DAC_RELEASE_RESET();
*/ __HAL_RCC_DAC_CLK_DISABLE();
sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE;
sConfig.DAC_Trigger = DAC_TRIGGER_T1_TRGO; // Configure GPIO
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE;
sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
//Error_Handler();
}
} }
const PinMap *analogout_pinmap() const PinMap *analogout_pinmap()
{ {
return PinMap_DAC; return PinMap_DAC;
} }
#endif
#endif // DEVICE_ANALOGOUT

View File

@ -37,36 +37,20 @@ extern "C" {
static inline uint32_t get_i2c_timing(int hz) static inline uint32_t get_i2c_timing(int hz)
{ {
uint32_t tim = 0; uint32_t tim = 0;
if (SystemCoreClock == 64000000) {
// Common settings: I2C clock = 64 MHz, Analog filter = ON, Digital filter coefficient = 0 // Common settings: I2C clock = 48 MHz, Analog filter = ON, Digital filter coefficient = 0
switch (hz) { switch (hz) {
case 100000: case 100000:
tim = 0x10707DBC; // Standard mode with Rise Time = 400ns and Fall Time = 100ns tim = 0x20E03F53; // Standard mode with Rise Time = 640ns and Fall Time = 20ns
break; break;
case 400000: case 400000:
tim = 0x00602173; // Fast mode with Rise Time = 250ns and Fall Time = 100ns tim = 0x20500817; // Fast mode with Rise Time = 250ns and Fall Time = 100ns
break; break;
case 1000000: case 1000000:
tim = 0x00300B29; // Fast mode Plus with Rise Time = 60ns and Fall Time = 100ns tim = 0x00500A18; // Fast mode Plus with Rise Time = 60ns and Fall Time = 100ns
break; break;
default: default:
break; break;
}
} else if (SystemCoreClock == 32000000) {
// Common settings: I2C clock = 32 MHz, Analog filter = ON, Digital filter coefficient = 0
switch (hz) {
case 100000:
tim = 0x00707CBB; // Standard mode with Rise Time = 400ns and Fall Time = 100ns
break;
case 400000:
tim = 0x00300F38; // Fast mode with Rise Time = 250ns and Fall Time = 100ns
break;
case 1000000:
tim = 0x00100413; // Fast mode Plus with Rise Time = 60ns and Fall Time = 100ns
break;
default:
break;
}
} }
return tim; return tim;
} }

View File

@ -41,6 +41,7 @@
#include "PeripheralPins.h" #include "PeripheralPins.h"
#include "i2c_device.h" // family specific defines #include "i2c_device.h" // family specific defines
#include "mbed_error.h" #include "mbed_error.h"
#include "platform/mbed_power_mgmt.h"
#ifndef DEBUG_STDIO #ifndef DEBUG_STDIO
# define DEBUG_STDIO 0 # define DEBUG_STDIO 0
@ -294,6 +295,11 @@ void i2c_init_internal(i2c_t *obj, const i2c_pinmap_t *pinmap)
// Configure I2C pins // Configure I2C pins
obj_s->event_i2cIRQ = I2C1_EV_IRQn; obj_s->event_i2cIRQ = I2C1_EV_IRQn;
obj_s->error_i2cIRQ = I2C1_ER_IRQn; obj_s->error_i2cIRQ = I2C1_ER_IRQn;
#if defined(TARGET_STM32WL)
/* In Stop2 mode, I2C1 and I2C2 instances are powered down (only I2C3 register content is kept) */
sleep_manager_lock_deep_sleep();
#endif
} }
#endif #endif
#if defined I2C2_BASE #if defined I2C2_BASE
@ -303,6 +309,11 @@ void i2c_init_internal(i2c_t *obj, const i2c_pinmap_t *pinmap)
__HAL_RCC_I2C2_CLK_ENABLE(); __HAL_RCC_I2C2_CLK_ENABLE();
obj_s->event_i2cIRQ = I2C2_EV_IRQn; obj_s->event_i2cIRQ = I2C2_EV_IRQn;
obj_s->error_i2cIRQ = I2C2_ER_IRQn; obj_s->error_i2cIRQ = I2C2_ER_IRQn;
#if defined(TARGET_STM32WL)
/* In Stop2 mode, I2C1 and I2C2 instances are powered down (only I2C3 register content is kept) */
sleep_manager_lock_deep_sleep();
#endif
} }
#endif #endif
#if defined I2C3_BASE #if defined I2C3_BASE
@ -380,11 +391,17 @@ void i2c_deinit_internal(i2c_t *obj)
#if defined I2C1_BASE #if defined I2C1_BASE
if (obj_s->i2c == I2C_1) { if (obj_s->i2c == I2C_1) {
__HAL_RCC_I2C1_CLK_DISABLE(); __HAL_RCC_I2C1_CLK_DISABLE();
#if defined(TARGET_STM32WL)
sleep_manager_unlock_deep_sleep();
#endif
} }
#endif #endif
#if defined I2C2_BASE #if defined I2C2_BASE
if (obj_s->i2c == I2C_2) { if (obj_s->i2c == I2C_2) {
__HAL_RCC_I2C2_CLK_DISABLE(); __HAL_RCC_I2C2_CLK_DISABLE();
#if defined(TARGET_STM32WL)
sleep_manager_unlock_deep_sleep();
#endif
} }
#endif #endif
#if defined I2C3_BASE #if defined I2C3_BASE
@ -758,7 +775,7 @@ int i2c_byte_read(i2c_t *obj, int last)
if ((tmpreg & I2C_CR2_RELOAD) != 0) { if ((tmpreg & I2C_CR2_RELOAD) != 0) {
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR)) { while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR)) {
if ((timeout--) == 0) { if ((timeout--) == 0) {
DEBUG_PRINTF("timeout in byte_read\r\n"); DEBUG_PRINTF("timeout in i2c_byte_read\r\n");
return -1; return -1;
} }
} }
@ -827,7 +844,7 @@ int i2c_byte_write(i2c_t *obj, int data)
if ((tmpreg & I2C_CR2_RELOAD) != 0) { if ((tmpreg & I2C_CR2_RELOAD) != 0) {
while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR)) { while (!__HAL_I2C_GET_FLAG(handle, I2C_FLAG_TCR)) {
if ((timeout--) == 0) { if ((timeout--) == 0) {
DEBUG_PRINTF("timeout in byte_write\r\n"); DEBUG_PRINTF("timeout in i2c_byte_write\r\n");
return 2; return 2;
} }
} }
@ -912,7 +929,7 @@ int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
i2c_ev_err_disable(obj); i2c_ev_err_disable(obj);
if ((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) { if ((timeout == 0) || (obj_s->event != I2C_EVENT_TRANSFER_COMPLETE)) {
DEBUG_PRINTF(" TIMEOUT or error in i2c_read\r\n"); DEBUG_PRINTF("TIMEOUT or error in i2c_read\r\n");
/* re-init IP to try and get back in a working state */ /* re-init IP to try and get back in a working state */
i2c_init_internal(obj, NULL); i2c_init_internal(obj, NULL);
} else { } else {
@ -986,7 +1003,7 @@ int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
count = length; count = length;
} }
} else { } else {
DEBUG_PRINTF("ERROR in i2c_read\r\n"); DEBUG_PRINTF("ERROR in i2c_write\r\n");
} }
return count; return count;