Merge branch 'master' of github.com:mbedmicro/mbed

pull/234/head
Bogdan Marinescu 2014-03-25 11:44:32 +00:00
commit 249f016cd8
20 changed files with 650 additions and 563 deletions

View File

@ -1,6 +1,6 @@
;******************** (C) COPYRIGHT 2014 STMicroelectronics ******************** ;******************** (C) COPYRIGHT 2014 STMicroelectronics ********************
;* File Name : startup_stm32f302x8.s ;* File Name : startup_stm32f302x8.s
; STM32F302x8 Devices vector table for MDK ARM_MICRO toolchain ; STM32F302x8 Devices vector table for MDK ARM_STD toolchain
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright (c) 2014, STMicroelectronics ; Copyright (c) 2014, STMicroelectronics
; All rights reserved. ; All rights reserved.

View File

@ -112,7 +112,7 @@
can define the HSE value in your toolchain compiler preprocessor. can define the HSE value in your toolchain compiler preprocessor.
*/ */
#if !defined (HSE_VALUE) #if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External oscillator in Hz */ #define HSE_VALUE ((uint32_t)8000000) /*!< Value of the External xtal in Hz */
#endif /* HSE_VALUE */ #endif /* HSE_VALUE */
/** /**

View File

@ -40,34 +40,22 @@
* value to your own configuration. * value to your own configuration.
* *
* 5. This file configures the system clock as follows: * 5. This file configures the system clock as follows:
*=============================================================================
* Supported STM32F30x device
*----------------------------------------------------------------------------- *-----------------------------------------------------------------------------
* System Clock source | PLL(HSI) * System clock source | 1- PLL_HSE_EXTC | 3- PLL_HSI
* | (external 8 MHz clock) | (internal 8 MHz)
* | 2- PLL_HSE_XTAL |
* | (external 8 MHz xtal) |
*----------------------------------------------------------------------------- *-----------------------------------------------------------------------------
* SYSCLK(Hz) | 64000000 * SYSCLK(MHz) | 72 | 64
*----------------------------------------------------------------------------- *-----------------------------------------------------------------------------
* HCLK(Hz) | 64000000 * AHBCLK (MHz) | 72 | 64
*----------------------------------------------------------------------------- *-----------------------------------------------------------------------------
* AHB Prescaler | 1 * APB1CLK (MHz) | 36 | 32
*----------------------------------------------------------------------------- *-----------------------------------------------------------------------------
* APB2 Prescaler | 1 * APB2CLK (MHz) | 72 | 64
*----------------------------------------------------------------------------- *-----------------------------------------------------------------------------
* APB1 Prescaler (Max = 36MHz) | 2 (SPI, ...) * USB capable (48 MHz precise clock) | YES | NO
*----------------------------------------------------------------------------- *-----------------------------------------------------------------------------
* HSE Frequency(Hz) | 8000000
*----------------------------------------------------------------------------
* PLLMUL | 16
*-----------------------------------------------------------------------------
* PREDIV | 2
*-----------------------------------------------------------------------------
* USB Clock | DISABLE
*-----------------------------------------------------------------------------
* Flash Latency(WS) | 2
*-----------------------------------------------------------------------------
* Prefetch Buffer | OFF
*-----------------------------------------------------------------------------
*=============================================================================
****************************************************************************** ******************************************************************************
* @attention * @attention
* *
@ -97,6 +85,7 @@
* *
****************************************************************************** ******************************************************************************
*/ */
/** @addtogroup CMSIS /** @addtogroup CMSIS
* @{ * @{
*/ */
@ -126,6 +115,7 @@
/** @addtogroup STM32F30x_System_Private_Defines /** @addtogroup STM32F30x_System_Private_Defines
* @{ * @{
*/ */
/*!< Uncomment the following line if you need to relocate your vector Table in /*!< Uncomment the following line if you need to relocate your vector Table in
Internal SRAM. */ Internal SRAM. */
/* #define VECT_TAB_SRAM */ /* #define VECT_TAB_SRAM */
@ -139,6 +129,10 @@
* @{ * @{
*/ */
/* Select the clock sources (other than HSI) to start with (0=OFF, 1=ON) */
#define USE_PLL_HSE_EXTC (1) /* Use external clock */
#define USE_PLL_HSE_XTAL (1) /* Use external xtal */
/** /**
* @} * @}
*/ */
@ -147,7 +141,7 @@
* @{ * @{
*/ */
uint32_t SystemCoreClock = 64000000; uint32_t SystemCoreClock = 64000000; /* Default with HSI. Will be updated if HSE is used */
__I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; __I uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
@ -161,6 +155,12 @@
void SetSysClock(void); void SetSysClock(void);
#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
uint8_t SetSysClock_PLL_HSE(uint8_t bypass);
#endif
uint8_t SetSysClock_PLL_HSI(void);
/** /**
* @} * @}
*/ */
@ -208,31 +208,16 @@ void SystemInit(void)
/* Disable all interrupts */ /* Disable all interrupts */
RCC->CIR = 0x00000000; RCC->CIR = 0x00000000;
/* Configure the System clock source, PLL Multiplier and Divider factors, /* Configure the Vector Table location add offset address ------------------*/
AHB/APBx prescalers and Flash settings ----------------------------------*/
SetSysClock();
#ifdef VECT_TAB_SRAM #ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#else #else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif #endif
// ADDED FOR MBED DEBUGGING PURPOSE /* Configure the System clock source, PLL Multiplier and Divider factors,
/* AHB/APBx prescalers and Flash settings */
// Enable GPIOA clock SetSysClock();
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
// Configure MCO pin (PA8)
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Select the clock to output
RCC_MCOConfig(RCC_MCOSource_SYSCLK, RCC_MCOPrescaler_1);
*/
} }
/** /**
@ -325,31 +310,90 @@ void SystemCoreClockUpdate (void)
*/ */
void SetSysClock(void) void SetSysClock(void)
{ {
/******************************************************************************/ /* 1- Try to start with HSE and external clock */
/* PLL (clocked by HSI) used as System clock source */ #if USE_PLL_HSE_EXTC != 0
/******************************************************************************/ if (SetSysClock_PLL_HSE(1) == 0)
#endif
{
/* 2- If fail try to start with HSE and external xtal */
#if USE_PLL_HSE_XTAL != 0
if (SetSysClock_PLL_HSE(0) == 0)
#endif
{
/* 3- If fail start with HSI clock */
if (SetSysClock_PLL_HSI() == 0)
{
while(1)
{
// [TODO] Put something here to tell the user that a problem occured...
}
}
}
}
/* At this stage the HSI is already enabled and used as System clock source */ /* Update SystemCoreClock variable */
SystemCoreClockUpdate();
/* SYSCLK, HCLK, PCLK configuration ----------------------------------------*/ /* Output SYSCLK on MCO pin(PA8) for debugging purpose */
/*
/* Disable Prefetch Buffer and set Flash Latency */ // Enable GPIOA clock
FLASH->ACR = (uint32_t)FLASH_ACR_LATENCY_1; RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);
// Configure MCO pin (PA8)
/* HCLK = 64 MHz */ GPIO_InitTypeDef GPIO_InitStructure;
RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
/* PCLK2 = 64 MHz */ GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
/* PCLK1 = 32 MHz (SPI, ...) */ GPIO_Init(GPIOA, &GPIO_InitStructure);
RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2; // Select the clock to output
RCC_MCOConfig(RCC_MCOSource_SYSCLK, RCC_MCOPrescaler_1);
/* PLL configuration
SYSCLK = 4 MHz * 16 = 64 MHz
*/ */
}
#if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0)
/******************************************************************************/
/* PLL (clocked by HSE) used as System clock source */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSE(uint8_t bypass)
{
__IO uint32_t StartUpCounter = 0;
__IO uint32_t HSEStatus = 0;
/* Bypass HSE: can be done only if HSE is OFF */
if (bypass != 0)
{
RCC->CR &= ((uint32_t)~RCC_CR_HSEON); /* To be sure HSE is OFF */
RCC->CR |= ((uint32_t)RCC_CR_HSEBYP);
}
/* Enable HSE */
RCC->CR |= ((uint32_t)RCC_CR_HSEON);
/* Wait till HSE is ready */
do
{
HSEStatus = RCC->CR & RCC_CR_HSERDY;
StartUpCounter++;
} while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
/* Check if HSE has started correctly */
if ((RCC->CR & RCC_CR_HSERDY) != RESET)
{
/* Enable prefetch buffer and set flash latency
0WS for 0 < SYSCLK <= 24 MHz
1WS for 24 < SYSCLK <= 48 MHz
2WS for 48 < SYSCLK <= 72 MHz */
FLASH->ACR = FLASH_ACR_PRFTBE | (uint32_t)FLASH_ACR_LATENCY_1; /* 2 WS */
/* Warning: values are obtained with external xtal or clock = 8 MHz */
/* SYSCLK = 72 MHz (8 MHz * 9) */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL)); RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSI_Div2 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL16); RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_PREDIV1 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL9
| RCC_CFGR_HPRE_DIV1 /* HCLK = 72 MHz */
| RCC_CFGR_PPRE2_DIV1 /* PCLK2 = 72 MHz */
| RCC_CFGR_PPRE1_DIV2); /* PCLK1 = 36 MHz */
/* USBCLK = 48 MHz (72 MHz / 1.5) --> USB OK */
/* Enable PLL */ /* Enable PLL */
RCC->CR |= RCC_CR_PLLON; RCC->CR |= RCC_CR_PLLON;
@ -367,6 +411,55 @@ void SetSysClock(void)
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL) while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{ {
} }
return 1; // OK
}
else
{
return 0; // FAIL
}
}
#endif
/******************************************************************************/
/* PLL (clocked by HSI) used as System clock source */
/******************************************************************************/
uint8_t SetSysClock_PLL_HSI(void)
{
/* At this stage the HSI is already enabled and used as System clock source */
/* Enable prefetch buffer and set flash latency
0WS for 0 < SYSCLK <= 24 MHz
1WS for 24 < SYSCLK <= 48 MHz
2WS for 48 < SYSCLK <= 72 MHz */
FLASH->ACR = FLASH_ACR_PRFTBE | (uint32_t)FLASH_ACR_LATENCY_1; /* 2 WS */
/* SYSCLK = 64 MHz (8 MHz / 2 * 16) */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL));
RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSI_Div2 | RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLMULL16
| RCC_CFGR_HPRE_DIV1 /* HCLK = 64 MHz */
| RCC_CFGR_PPRE2_DIV1 /* PCLK2 = 64 MHz */
| RCC_CFGR_PPRE1_DIV2); /* PCLK1 = 32 MHz */
/* USBCLK = 42.667 MHz (64 MHz / 1.5) --> USB NOT POSSIBLE */
/* Enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* Wait till PLL is ready */
while((RCC->CR & RCC_CR_PLLRDY) == 0)
{
}
/* Select PLL as system clock source */
RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;
/* Wait till PLL is used as system clock source */
while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)RCC_CFGR_SWS_PLL)
{
}
return 1; // OK
} }
/** /**
@ -382,4 +475,3 @@ void SetSysClock(void)
*/ */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@ -149,9 +149,9 @@ typedef enum {
USBRX = PA_3, USBRX = PA_3,
I2C_SCL = PB_8, I2C_SCL = PB_8,
I2C_SDA = PB_9, I2C_SDA = PB_9,
SPI_MOSI = PA_7, SPI_MOSI = PB_15,
SPI_MISO = PA_6, SPI_MISO = PB_14,
SPI_SCK = PA_5, SPI_SCK = PB_13,
SPI_CS = PB_6, SPI_CS = PB_6,
PWM_OUT = PB_3, PWM_OUT = PB_3,

View File

@ -96,8 +96,7 @@ void analogout_write(dac_t *obj, float value) {
void analogout_write_u16(dac_t *obj, uint16_t value) { void analogout_write_u16(dac_t *obj, uint16_t value) {
if (value > (uint16_t)RANGE_12BIT) { if (value > (uint16_t)RANGE_12BIT) {
dac_write(obj, (uint16_t)RANGE_12BIT); // Max value dac_write(obj, (uint16_t)RANGE_12BIT); // Max value
} } else {
else {
dac_write(obj, value); dac_write(obj, value);
} }
} }

View File

@ -65,8 +65,7 @@ void gpio_mode(gpio_t *obj, PinMode mode) {
void gpio_dir(gpio_t *obj, PinDirection direction) { void gpio_dir(gpio_t *obj, PinDirection direction) {
if (direction == PIN_OUTPUT) { if (direction == PIN_OUTPUT) {
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)); pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF));
} } else { // PIN_INPUT
else { // PIN_INPUT
pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF)); pin_function(obj->pin, STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
} }
} }

View File

@ -53,8 +53,7 @@ static void handle_interrupt_in(uint32_t irq_index) {
uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]); uint32_t pin = (uint32_t)(1 << channel_pin[irq_index]);
// Clear interrupt flag // Clear interrupt flag
if (EXTI_GetITStatus(channel_pin[irq_index]) != RESET) if (EXTI_GetITStatus(channel_pin[irq_index]) != RESET) {
{
EXTI_ClearITPendingBit(channel_pin[irq_index]); EXTI_ClearITPendingBit(channel_pin[irq_index]);
} }
@ -63,20 +62,38 @@ static void handle_interrupt_in(uint32_t irq_index) {
// Check which edge has generated the irq // Check which edge has generated the irq
if ((gpio->IDR & pin) == 0) { if ((gpio->IDR & pin) == 0) {
irq_handler(channel_ids[irq_index], IRQ_FALL); irq_handler(channel_ids[irq_index], IRQ_FALL);
} } else {
else {
irq_handler(channel_ids[irq_index], IRQ_RISE); irq_handler(channel_ids[irq_index], IRQ_RISE);
} }
} }
// The irq_index is passed to the function static void gpio_irq0(void) {
static void gpio_irq0(void) {handle_interrupt_in(0);} // EXTI line 0 handle_interrupt_in(0); // EXTI line 0
static void gpio_irq1(void) {handle_interrupt_in(1);} // EXTI line 1 }
static void gpio_irq2(void) {handle_interrupt_in(2);} // EXTI line 2
static void gpio_irq3(void) {handle_interrupt_in(3);} // EXTI line 3 static void gpio_irq1(void) {
static void gpio_irq4(void) {handle_interrupt_in(4);} // EXTI line 4 handle_interrupt_in(1); // EXTI line 1
static void gpio_irq5(void) {handle_interrupt_in(5);} // EXTI lines 5 to 9 }
static void gpio_irq6(void) {handle_interrupt_in(6);} // EXTI lines 10 to 15
static void gpio_irq2(void) {
handle_interrupt_in(2); // EXTI line 2
}
static void gpio_irq3(void) {
handle_interrupt_in(3); // EXTI line 3
}
static void gpio_irq4(void) {
handle_interrupt_in(4); // EXTI line 4
}
static void gpio_irq5(void) {
handle_interrupt_in(5); // EXTI lines 5 to 9
}
static void gpio_irq6(void) {
handle_interrupt_in(6); // EXTI lines 10 to 15
}
extern uint32_t Set_GPIO_Clock(uint32_t port_idx); extern uint32_t Set_GPIO_Clock(uint32_t port_idx);
@ -203,8 +220,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) { if ((obj->event == EDGE_FALL) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH; obj->event = EDGE_BOTH;
} } else { // NONE or RISE
else { // NONE or RISE
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising;
obj->event = EDGE_RISE; obj->event = EDGE_RISE;
} }
@ -214,8 +230,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) { if ((obj->event == EDGE_RISE) || (obj->event == EDGE_BOTH)) {
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling;
obj->event = EDGE_BOTH; obj->event = EDGE_BOTH;
} } else { // NONE or FALL
else { // NONE or FALL
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
obj->event = EDGE_FALL; obj->event = EDGE_FALL;
} }
@ -223,8 +238,7 @@ void gpio_irq_set(gpio_irq_t *obj, gpio_irq_event event, uint32_t enable) {
if (enable) { if (enable) {
EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_InitStructure.EXTI_LineCmd = ENABLE;
} } else {
else {
EXTI_InitStructure.EXTI_LineCmd = DISABLE; EXTI_InitStructure.EXTI_LineCmd = DISABLE;
} }

View File

@ -50,8 +50,7 @@ typedef struct {
static inline void gpio_write(gpio_t *obj, int value) { static inline void gpio_write(gpio_t *obj, int value) {
if (value) { if (value) {
*obj->reg_set = obj->mask; *obj->reg_set = obj->mask;
} } else {
else {
*obj->reg_clr = obj->mask; *obj->reg_clr = obj->mask;
} }
} }

View File

@ -66,8 +66,7 @@ void port_dir(port_t *obj, PinDirection dir) {
if (obj->mask & (1 << i)) { // If the pin is used if (obj->mask & (1 << i)) { // If the pin is used
if (dir == PIN_OUTPUT) { if (dir == PIN_OUTPUT) {
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF)); pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_OUT, GPIO_OType_PP, GPIO_PuPd_NOPULL, 0xFF));
} } else { // PIN_INPUT
else { // PIN_INPUT
pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF)); pin_function(port_pin(obj->port, i), STM_PIN_DATA(GPIO_Mode_IN, 0, GPIO_PuPd_NOPULL, 0xFF));
} }
} }
@ -90,8 +89,7 @@ void port_write(port_t *obj, int value) {
int port_read(port_t *obj) { int port_read(port_t *obj) {
if (obj->direction == PIN_OUTPUT) { if (obj->direction == PIN_OUTPUT) {
return (*obj->reg_out & obj->mask); return (*obj->reg_out & obj->mask);
} } else { // PIN_INPUT
else { // PIN_INPUT
return (*obj->reg_in & obj->mask); return (*obj->reg_in & obj->mask);
} }
} }

View File

@ -147,8 +147,7 @@ void serial_baud(serial_t *obj, int baudrate) {
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
if (data_bits == 8) { if (data_bits == 8) {
obj->databits = USART_WordLength_8b; obj->databits = USART_WordLength_8b;
} } else {
else {
obj->databits = USART_WordLength_9b; obj->databits = USART_WordLength_9b;
} }
@ -168,8 +167,7 @@ void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_b
if (stop_bits == 2) { if (stop_bits == 2) {
obj->stopbits = USART_StopBits_2; obj->stopbits = USART_StopBits_2;
} } else {
else {
obj->stopbits = USART_StopBits_1; obj->stopbits = USART_StopBits_1;
} }
@ -194,9 +192,15 @@ static void uart_irq(USART_TypeDef* usart, int id) {
} }
} }
static void uart1_irq(void) {uart_irq((USART_TypeDef*)UART_1, 0);} static void uart1_irq(void) {
static void uart2_irq(void) {uart_irq((USART_TypeDef*)UART_2, 1);} uart_irq((USART_TypeDef*)UART_1, 0);
static void uart3_irq(void) {uart_irq((USART_TypeDef*)UART_3, 2);} }
static void uart2_irq(void) {
uart_irq((USART_TypeDef*)UART_2, 1);
}
static void uart3_irq(void) {
uart_irq((USART_TypeDef*)UART_3, 2);
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
irq_handler = handler; irq_handler = handler;
@ -227,8 +231,7 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
if (irq == RxIrq) { if (irq == RxIrq) {
USART_ITConfig(usart, USART_IT_RXNE, ENABLE); USART_ITConfig(usart, USART_IT_RXNE, ENABLE);
} } else { // TxIrq
else { // TxIrq
USART_ITConfig(usart, USART_IT_TC, ENABLE); USART_ITConfig(usart, USART_IT_TC, ENABLE);
} }
@ -243,8 +246,7 @@ void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
USART_ITConfig(usart, USART_IT_RXNE, DISABLE); USART_ITConfig(usart, USART_IT_RXNE, DISABLE);
// Check if TxIrq is disabled too // Check if TxIrq is disabled too
if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1; if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1;
} } else { // TxIrq
else { // TxIrq
USART_ITConfig(usart, USART_IT_TXE, DISABLE); USART_ITConfig(usart, USART_IT_TXE, DISABLE);
// Check if RxIrq is disabled too // Check if RxIrq is disabled too
if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1; if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;

View File

@ -34,8 +34,7 @@
extern void SetSysClock(void); extern void SetSysClock(void);
// MCU SLEEP mode // MCU SLEEP mode
void sleep(void) void sleep(void) {
{
// Enable PWR clock // Enable PWR clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
@ -44,8 +43,7 @@ void sleep(void)
} }
// MCU STOP mode // MCU STOP mode
void deepsleep(void) void deepsleep(void) {
{
// Enable PWR clock // Enable PWR clock
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);

View File

@ -128,8 +128,7 @@ void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel
if (ssel == NC) { // Master if (ssel == NC) { // Master
obj->mode = SPI_Mode_Master; obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
} } else { // Slave
else { // Slave
pinmap_pinout(ssel, PinMap_SPI_SSEL); pinmap_pinout(ssel, PinMap_SPI_SSEL);
obj->mode = SPI_Mode_Slave; obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
@ -147,8 +146,7 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
// Save new values // Save new values
if (bits == 8) { if (bits == 8) {
obj->bits = SPI_DataSize_8b; obj->bits = SPI_DataSize_8b;
} } else {
else {
obj->bits = SPI_DataSize_16b; obj->bits = SPI_DataSize_16b;
} }
@ -174,8 +172,7 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
if (slave == 0) { if (slave == 0) {
obj->mode = SPI_Mode_Master; obj->mode = SPI_Mode_Master;
obj->nss = SPI_NSS_Soft; obj->nss = SPI_NSS_Soft;
} } else {
else {
obj->mode = SPI_Mode_Slave; obj->mode = SPI_Mode_Slave;
obj->nss = SPI_NSS_Hard; obj->nss = SPI_NSS_Hard;
} }
@ -184,30 +181,23 @@ void spi_format(spi_t *obj, int bits, int mode, int slave) {
} }
void spi_frequency(spi_t *obj, int hz) { void spi_frequency(spi_t *obj, int hz) {
// Note: The frequencies are obtained with SPI2 clock = 32 MHz (APB1 clock) // Values depend of PCLK1: 32 MHz if HSI is used, 36 MHz if HSE is used
if (hz < 250000) { if (hz < 250000) {
obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz - 141 kHz
} } else if ((hz >= 250000) && (hz < 500000)) {
else if ((hz >= 250000) && (hz < 500000)) { obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz - 280 kHz
obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz } else if ((hz >= 500000) && (hz < 1000000)) {
} obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz - 560 kHz
else if ((hz >= 500000) && (hz < 1000000)) { } else if ((hz >= 1000000) && (hz < 2000000)) {
obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz - 1.13 MHz
} } else if ((hz >= 2000000) && (hz < 4000000)) {
else if ((hz >= 1000000) && (hz < 2000000)) { obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz - 2.25 MHz
obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz } else if ((hz >= 4000000) && (hz < 8000000)) {
} obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz - 4.5 MHz
else if ((hz >= 2000000) && (hz < 4000000)) { } else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz - 9 MHz
} } else { // >= 16000000
else if ((hz >= 4000000) && (hz < 8000000)) { obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz - 18 MHz
obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz
}
else if ((hz >= 8000000) && (hz < 16000000)) {
obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz
}
else { // >= 16000000
obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz
} }
init_spi(obj); init_spi(obj);
} }
@ -233,8 +223,7 @@ static inline void ssp_write(spi_t *obj, int value) {
while (!ssp_writeable(obj)); while (!ssp_writeable(obj));
if (obj->bits == SPI_DataSize_8b) { if (obj->bits == SPI_DataSize_8b) {
SPI_SendData8(spi, (uint8_t)value); SPI_SendData8(spi, (uint8_t)value);
} } else {
else {
SPI_I2S_SendData16(spi, (uint16_t)value); SPI_I2S_SendData16(spi, (uint16_t)value);
} }
} }
@ -244,8 +233,7 @@ static inline int ssp_read(spi_t *obj) {
while (!ssp_readable(obj)); while (!ssp_readable(obj));
if (obj->bits == SPI_DataSize_8b) { if (obj->bits == SPI_DataSize_8b) {
return (int)SPI_ReceiveData8(spi); return (int)SPI_ReceiveData8(spi);
} } else {
else {
return (int)SPI_I2S_ReceiveData16(spi); return (int)SPI_I2S_ReceiveData16(spi);
} }
} }
@ -270,8 +258,7 @@ int spi_slave_read(spi_t *obj) {
SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
if (obj->bits == SPI_DataSize_8b) { if (obj->bits == SPI_DataSize_8b) {
return (int)SPI_ReceiveData8(spi); return (int)SPI_ReceiveData8(spi);
} } else {
else {
return (int)SPI_I2S_ReceiveData16(spi); return (int)SPI_I2S_ReceiveData16(spi);
} }
} }
@ -281,8 +268,7 @@ void spi_slave_write(spi_t *obj, int value) {
while (!ssp_writeable(obj)); while (!ssp_writeable(obj));
if (obj->bits == SPI_DataSize_8b) { if (obj->bits == SPI_DataSize_8b) {
SPI_SendData8(spi, (uint8_t)value); SPI_SendData8(spi, (uint8_t)value);
} } else {
else {
SPI_I2S_SendData16(spi, (uint16_t)value); SPI_I2S_SendData16(spi, (uint16_t)value);
} }
} }