mbed-os/hal/source/mbed_ticker_api.c

651 lines
21 KiB
C
Raw Normal View History

/* mbed Microcontroller Library
* Copyright (c) 2015 ARM Limited
2018-11-09 11:27:45 +00:00
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stddef.h>
#include "hal/ticker_api.h"
#include "platform/mbed_critical.h"
2018-08-27 18:47:19 +00:00
#include "platform/mbed_assert.h"
#include "platform/mbed_error.h"
#if !MBED_CONF_TARGET_CUSTOM_TICKERS
#include "us_ticker_api.h"
#include "lp_ticker_api.h"
#endif
// It's almost always worth avoiding division, but only worth avoiding
// multiplication on some cores.
#if defined(__CORTEX_M0) || defined(__CORTEX_M0PLUS) || defined(__CORTEX_M23)
#define SLOW_MULTIPLY 1
#else
#define SLOW_MULTIPLY 0
#endif
// Do we compute ratio from frequency, or can we always get it from defines?
#if MBED_CONF_TARGET_CUSTOM_TICKERS || (DEVICE_USTICKER && !defined US_TICKER_PERIOD_NUM) || (DEVICE_LPTICKER && !defined LP_TICKER_PERIOD_NUM)
#define COMPUTE_RATIO_FROM_FREQUENCY 1
#else
#define COMPUTE_RATIO_FROM_FREQUENCY 0
#endif
static void schedule_interrupt(const ticker_data_t *const ticker);
static void update_present_time(const ticker_data_t *const ticker);
/* Macros that either look up the info from mbed_ticker_queue_t, or give a constant.
* Some constants are defined during the definition of initialize, to keep the
* compile-time and run-time calculations alongside each other.
*/
#ifdef MBED_TICKER_CONSTANT_PERIOD_NUM
#define TICKER_PERIOD_NUM(queue) MBED_TICKER_CONSTANT_PERIOD_NUM
// don't bother doing computing shift - rely on the compiler being able convert "/ 2^k" to ">> k",
// except that it's useful to note shift 0 for numerator 1, as that's special-cased
#define TICKER_PERIOD_NUM_SHIFTS(queue) (MBED_TICKER_CONSTANT_PERIOD_NUM == 1 ? 0 : -1)
#else
#define TICKER_PERIOD_NUM(queue) ((queue)->period_num)
#define TICKER_PERIOD_NUM_SHIFTS(queue) ((queue)->period_num_shifts)
#endif
#ifdef MBED_TICKER_CONSTANT_PERIOD_DEN
#define TICKER_PERIOD_DEN(queue) MBED_TICKER_CONSTANT_PERIOD_DEN
#define TICKER_PERIOD_DEN_SHIFTS(queue) (MBED_TICKER_CONSTANT_PERIOD_DEN == 1 ? 0 : -1)
#else
#define TICKER_PERIOD_DEN(queue) ((queue)->period_den)
#define TICKER_PERIOD_DEN_SHIFTS(queue) ((queue)->period_den_shifts)
#endif
#if MBED_TICKER_CONSTANT_PERIOD_DEN == 1
#define TICKER_TICK_REMAINDER(queue) 0
#define TICKER_SET_TICK_REMAINDER(queue, rem) ((void)(rem))
#else
#define TICKER_TICK_REMAINDER(queue) ((queue)->tick_remainder)
#define TICKER_SET_TICK_REMAINDER(queue, rem) ((queue)->tick_remainder = (rem))
#endif
// But the above can generate compiler warnings from `if (-1 >= 0) { x >>= -1; }`
#if defined ( __CC_ARM )
#pragma diag_suppress 62 // Shift count is negative
#elif defined ( __GNUC__ )
#pragma GCC diagnostic ignored "-Wshift-count-negative"
#elif defined (__ICCARM__)
#pragma diag_suppress=Pe062 // Shift count is negative
#endif
#ifdef MBED_TICKER_CONSTANT_MASK
#define TICKER_BITMASK(queue) MBED_TICKER_CONSTANT_MASK
#define TICKER_MAX_DELTA(queue) CONSTANT_MAX_DELTA
#else
#define TICKER_BITMASK(queue) ((queue)->bitmask)
#define TICKER_MAX_DELTA(queue) ((queue)->max_delta)
#endif
#if defined MBED_TICKER_CONSTANT_PERIOD && defined MBED_TICKER_CONSTANT_MASK
#define TICKER_MAX_DELTA_US(queue) CONSTANT_MAX_DELTA_US
#else
#define TICKER_MAX_DELTA_US(queue) ((queue)->max_delta_us)
#endif
#if COMPUTE_RATIO_FROM_FREQUENCY
static inline uint32_t gcd(uint32_t a, uint32_t b)
{
do {
uint32_t r = a % b;
a = b;
b = r;
} while (b != 0);
return a;
}
static int exact_log2(uint32_t n)
{
for (int i = 31; i >= 0; --i) {
if ((1U << i) == n) {
return i;
}
}
return -1;
}
#endif
/*
2018-06-20 10:24:18 +00:00
* Initialize a ticker instance.
*/
static void initialize(const ticker_data_t *ticker)
{
2018-06-20 10:24:18 +00:00
// return if the queue has already been initialized, in that case the
// interface used by the queue is already initialized.
2018-06-20 10:24:18 +00:00
if (ticker->queue->initialized) {
return;
}
if (ticker->queue->suspended) {
return;
}
ticker->interface->init();
#if MBED_TRAP_ERRORS_ENABLED || COMPUTE_RATIO_FROM_FREQUENCY || !defined MBED_TICKER_CONSTANT_MASK
const ticker_info_t *info = ticker->interface->get_info();
#endif
#if !MBED_CONF_TARGET_CUSTOM_TICKERS && MBED_TRAP_ERRORS_ENABLED
/* They must be passing us one of the well-known tickers. Check info
* rather than the data, to cope with the lp_ticker_wrapper. It doesn't count
* as a "custom ticker" for the purpose of this optimization.
*
* This check has the downside of potentially pulling in code for an unused ticker.
* This is minimized by using direct xxx_ticker_get_info() calls rather than
* `get_us_ticker_data()->interface->get_info()` which would pull in the entire system,
* and we wrap it in `MBED_TRAP_ERRORS_ENABLED`.
*/
#if DEVICE_USTICKER && DEVICE_LPTICKER
MBED_ASSERT(info == us_ticker_get_info() || info == lp_ticker_get_info());
#elif DEVICE_USTICKER
MBED_ASSERT(info == us_ticker_get_info());
#elif DEVICE_LPTICKER
MBED_ASSERT(info == lp_ticker_get_info());
#else
MBED_ASSERT(false);
#endif
#endif
#if COMPUTE_RATIO_FROM_FREQUENCY
// Will need to use frequency computation for at least some cases, so always do it
// to minimise code size.
uint32_t frequency = info->frequency;
if (frequency == 0) {
#if MBED_TRAP_ERRORS_ENABLED
MBED_ERROR(
MBED_MAKE_ERROR(
MBED_MODULE_HAL,
MBED_ERROR_CODE_NOT_READY
),
"Ticker frequency is zero"
);
#else
frequency = 1000000;
#endif // MBED_TRAP_ERRORS_ENABLED
}
const uint32_t period_gcd = gcd(frequency, 1000000);
ticker->queue->period_num = 1000000 / period_gcd;
ticker->queue->period_num_shifts = exact_log2(ticker->queue->period_num);
ticker->queue->period_den = frequency / period_gcd;
ticker->queue->period_den_shifts = exact_log2(ticker->queue->period_den);
#elif !defined MBED_TICKER_CONSTANT_PERIOD
// Have ratio defines, but need to figure out which one applies.
// `runs_in_deep_sleep` is a viable proxy. (We have asserts above that
// check that they're only passing usticker or lpticker).
const bool is_usticker = !DEVICE_LPTICKER || !ticker->interface->runs_in_deep_sleep;
#ifndef MBED_TICKER_CONSTANT_PERIOD_NUM
ticker->queue->period_num = is_usticker ? US_TICKER_PERIOD_NUM : LP_TICKER_PERIOD_NUM;
#endif
#ifndef MBED_TICKER_CONSTANT_PERIOD_DEN
ticker->queue->period_den = is_usticker ? US_TICKER_PERIOD_DEN : LP_TICKER_PERIOD_DEN;
#endif
#endif // COMPUTE_RATIO_FROM_FREQUENCY / MBED_TICKER_CONSTANT_PERIOD
#ifndef MBED_TICKER_CONSTANT_MASK
uint32_t bits = info->bits;
if ((bits > 32) || (bits < 4)) {
#if MBED_TRAP_ERRORS_ENABLED
MBED_ERROR(
MBED_MAKE_ERROR(
MBED_MODULE_HAL,
MBED_ERROR_CODE_INVALID_SIZE
),
"Ticker number of bit is greater than 32 or less than 4 bits"
);
#else
bits = 32;
#endif // MBED_TRAP_ERRORS_ENABLED
}
ticker->queue->bitmask = bits == 32 ? 0xFFFFFFFF : (1U << bits) - 1;
ticker->queue->max_delta = 7 << (bits - 4); // 7/16th
#else // MBED_TICKER_CONSTANT_MASK
#define CONSTANT_MAX_DELTA (7 * ((MBED_TICKER_CONSTANT_MASK >> 4) + 1)) // 7/16th
#endif // MBED_TICKER_CONSTANT_MASK
#if !(defined MBED_TICKER_CONSTANT_PERIOD && defined MBED_TICKER_CONSTANT_MASK)
ticker->queue->max_delta_us =
((uint64_t)TICKER_MAX_DELTA(ticker->queue) * TICKER_PERIOD_NUM(ticker->queue) + TICKER_PERIOD_DEN(ticker->queue) - 1) / TICKER_PERIOD_DEN(ticker->queue);
#else
#define CONSTANT_MAX_DELTA_US \
(((uint64_t)CONSTANT_MAX_DELTA * MBED_TICKER_CONSTANT_PERIOD_NUM + MBED_TICKER_CONSTANT_PERIOD_DEN - 1) / MBED_TICKER_CONSTANT_PERIOD_DEN)
#endif
ticker->queue->event_handler = NULL;
ticker->queue->head = NULL;
ticker->queue->tick_last_read = ticker->interface->read();
TICKER_SET_TICK_REMAINDER(ticker->queue, 0);
ticker->queue->present_time = 0;
ticker->queue->dispatching = false;
ticker->queue->suspended = false;
ticker->queue->initialized = true;
2018-06-20 10:24:18 +00:00
update_present_time(ticker);
schedule_interrupt(ticker);
}
/**
2018-06-20 10:24:18 +00:00
* Set the event handler function of a ticker instance.
*/
static void set_handler(const ticker_data_t *const ticker, ticker_event_handler handler)
{
ticker->queue->event_handler = handler;
}
/*
* Convert a 32 bit timestamp into a 64 bit timestamp.
*
2018-06-20 10:24:18 +00:00
* A 64 bit timestamp is used as the point of time of reference while the
* timestamp to convert is relative to this point of time.
*
* The lower 32 bits of the timestamp returned will be equal to the timestamp to
* convert.
*
2018-06-20 10:24:18 +00:00
* If the timestamp to convert is less than the lower 32 bits of the time
* reference then the timestamp to convert is seen as an overflowed value and
* the upper 32 bit of the timestamp returned will be equal to the upper 32 bit
* of the reference point + 1.
* Otherwise, the upper 32 bit returned will be equal to the upper 32 bit of the
* reference point.
*
* @param ref: The 64 bit timestamp of reference.
* @param timestamp: The timestamp to convert.
*/
static us_timestamp_t convert_timestamp(us_timestamp_t ref, timestamp_t timestamp)
{
bool overflow = timestamp < ((timestamp_t) ref) ? true : false;
us_timestamp_t result = (ref & ~((us_timestamp_t)UINT32_MAX)) | timestamp;
2018-06-20 10:24:18 +00:00
if (overflow) {
result += (1ULL << 32);
}
return result;
}
/**
* Update the present timestamp value of a ticker.
*/
static void update_present_time(const ticker_data_t *const ticker)
{
ticker_event_queue_t *queue = ticker->queue;
if (queue->suspended) {
return;
}
uint32_t ticker_time = ticker->interface->read();
if (ticker_time == queue->tick_last_read) {
// No work to do
return;
}
uint32_t elapsed_ticks = (ticker_time - queue->tick_last_read) & TICKER_BITMASK(queue);
queue->tick_last_read = ticker_time;
// Convert elapsed_ticks to elapsed_us as (elapsed_ticks * period_num / period_den)
// adding in any remainder from the last division
uint64_t scaled_ticks;
if (SLOW_MULTIPLY && TICKER_PERIOD_NUM_SHIFTS(queue) >= 0) {
scaled_ticks = (uint64_t) elapsed_ticks << TICKER_PERIOD_NUM_SHIFTS(queue);
} else {
scaled_ticks = (uint64_t) elapsed_ticks * TICKER_PERIOD_NUM(queue);
}
uint64_t elapsed_us;
if (TICKER_PERIOD_DEN_SHIFTS(queue) == 0) {
// Optimized for cases that don't need division
elapsed_us = scaled_ticks;
} else {
scaled_ticks += TICKER_TICK_REMAINDER(queue);
if (TICKER_PERIOD_DEN_SHIFTS(queue) >= 0) {
// Speed-optimised for shifts
elapsed_us = scaled_ticks >> TICKER_PERIOD_DEN_SHIFTS(queue);
TICKER_SET_TICK_REMAINDER(queue, scaled_ticks - (elapsed_us << TICKER_PERIOD_DEN_SHIFTS(queue)));
2020-04-27 10:52:04 +00:00
} else {
// General case division
elapsed_us = scaled_ticks / TICKER_PERIOD_DEN(queue);
TICKER_SET_TICK_REMAINDER(queue, scaled_ticks - elapsed_us * TICKER_PERIOD_DEN(queue));
}
}
// Update current time
queue->present_time += elapsed_us;
}
/**
* Given the absolute timestamp compute the hal tick timestamp rounded up.
*/
static timestamp_t compute_tick_round_up(const ticker_data_t *const ticker, us_timestamp_t timestamp)
{
ticker_event_queue_t *queue = ticker->queue;
us_timestamp_t delta_us = timestamp - queue->present_time;
timestamp_t delta = TICKER_MAX_DELTA(queue);
if (delta_us <= TICKER_MAX_DELTA_US(queue)) {
// Checking max_delta_us ensures the operation will not overflow
// Convert delta_us to delta (ticks) as (delta_us * period_den / period_num)
// taking care to round up if num != 1
uint64_t scaled_delta;
if (SLOW_MULTIPLY && TICKER_PERIOD_DEN_SHIFTS(queue) >= 0) {
// Optimized denominators divisible by 2
scaled_delta = delta_us << TICKER_PERIOD_DEN_SHIFTS(queue);
} else {
// General case
scaled_delta = delta_us * TICKER_PERIOD_DEN(queue);
2020-04-27 10:52:04 +00:00
}
if (TICKER_PERIOD_NUM_SHIFTS(queue) == 0) {
delta = scaled_delta;
} else {
scaled_delta += TICKER_PERIOD_NUM(queue) - 1;
if (TICKER_PERIOD_NUM_SHIFTS(queue) >= 0) {
// Optimized numerators divisible by 2
delta = scaled_delta >> TICKER_PERIOD_NUM_SHIFTS(queue);
} else {
// General case
delta = scaled_delta / TICKER_PERIOD_NUM(queue);
}
}
if (delta > TICKER_MAX_DELTA(queue)) {
delta = TICKER_MAX_DELTA(queue);
}
}
return (queue->tick_last_read + delta) & TICKER_BITMASK(queue);
}
2020-04-27 10:52:04 +00:00
//NOTE: Must be called from critical section!
static void insert_event(const ticker_data_t *const ticker, ticker_event_t *obj, us_timestamp_t timestamp, uint32_t id)
{
ticker_event_queue_t *queue = ticker->queue;
2020-04-27 10:52:04 +00:00
// initialise our data
obj->timestamp = timestamp;
obj->id = id;
/* Go through the list until we either reach the end, or find
an element this should come before (which is possibly the
head). */
ticker_event_t *prev = NULL, *p = queue->head;
2020-04-27 10:52:04 +00:00
while (p != NULL) {
/* check if we come before p */
if (timestamp < p->timestamp) {
break;
}
/* go to the next element */
prev = p;
p = p->next;
}
/* if we're at the end p will be NULL, which is correct */
obj->next = p;
/* if prev is NULL we're at the head */
if (prev == NULL) {
queue->head = obj;
2020-04-27 10:52:04 +00:00
} else {
prev->next = obj;
}
if (prev == NULL || timestamp <= queue->present_time) {
2020-04-27 10:52:04 +00:00
schedule_interrupt(ticker);
}
}
/**
* Return 1 if the tick has incremented to or past match_tick, otherwise 0.
*/
int _ticker_match_interval_passed(timestamp_t prev_tick, timestamp_t cur_tick, timestamp_t match_tick)
{
if (match_tick > prev_tick) {
return (cur_tick >= match_tick) || (cur_tick < prev_tick);
} else {
return (cur_tick < prev_tick) && (cur_tick >= match_tick);
}
}
/**
2018-06-20 10:24:18 +00:00
* Compute the time when the interrupt has to be triggered and schedule it.
*
* If there is no event in the queue or the next event to execute is in more
* than ticker.queue.max_delta ticks from now then the ticker irq will be
* scheduled in ticker.queue.max_delta ticks. Otherwise the irq will be
* scheduled to happen when the running counter reach the timestamp of the
* first event in the queue.
2018-06-20 10:24:18 +00:00
*
* @note If there is no event in the queue then the interrupt is scheduled to
* in ticker.queue.max_delta. This is necessary to keep track
* of the timer overflow.
*/
static void schedule_interrupt(const ticker_data_t *const ticker)
{
ticker_event_queue_t *queue = ticker->queue;
if (queue->suspended || queue->dispatching) {
// Don't schedule the next interrupt until dispatching is
// finished. This prevents repeated calls to interface->set_interrupt
return;
}
update_present_time(ticker);
if (queue->head) {
us_timestamp_t present = queue->present_time;
us_timestamp_t match_time = queue->head->timestamp;
// if the event at the head of the queue is in the past then schedule
// it immediately.
if (match_time <= present) {
ticker->interface->fire_interrupt();
return;
}
timestamp_t match_tick = compute_tick_round_up(ticker, match_time);
// The same tick should never occur since match_tick is rounded up.
// If the same tick is returned scheduling will not work correctly.
MBED_ASSERT(match_tick != queue->tick_last_read);
ticker->interface->set_interrupt(match_tick);
timestamp_t cur_tick = ticker->interface->read();
if (_ticker_match_interval_passed(queue->tick_last_read, cur_tick, match_tick)) {
ticker->interface->fire_interrupt();
}
} else {
uint32_t match_tick =
(queue->tick_last_read + TICKER_MAX_DELTA(queue)) & TICKER_BITMASK(queue);
ticker->interface->set_interrupt(match_tick);
}
}
void ticker_set_handler(const ticker_data_t *const ticker, ticker_event_handler handler)
{
initialize(ticker);
core_util_critical_section_enter();
set_handler(ticker, handler);
core_util_critical_section_exit();
}
void ticker_irq_handler(const ticker_data_t *const ticker)
{
core_util_critical_section_enter();
ticker_event_queue_t *queue = ticker->queue;
ticker->interface->clear_interrupt();
if (queue->suspended) {
core_util_critical_section_exit();
return;
}
/* Go through all the pending TimerEvents */
queue->dispatching = true;
while (1) {
if (queue->head == NULL) {
break;
}
2018-06-20 10:24:18 +00:00
// update the current timestamp used by the queue
update_present_time(ticker);
if (queue->head->timestamp <= queue->present_time) {
// This event was in the past:
// point to the following one and execute its handler
ticker_event_t *p = ticker->queue->head;
queue->head = queue->head->next;
if (queue->event_handler != NULL) {
(*queue->event_handler)(p->id); // NOTE: the handler can set new events
}
/* Note: We continue back to examining the head because calling the
* event handler may have altered the chain of pending events. */
} else {
break;
2018-06-20 10:24:18 +00:00
}
}
queue->dispatching = false;
schedule_interrupt(ticker);
core_util_critical_section_exit();
}
2020-04-27 10:52:04 +00:00
void ticker_insert_event(const ticker_data_t *const ticker, ticker_event_t *obj, timestamp_t timestamp, uint32_t id)
{
core_util_critical_section_enter();
// update the current timestamp
update_present_time(ticker);
us_timestamp_t absolute_timestamp = convert_timestamp(
2018-06-20 10:24:18 +00:00
ticker->queue->present_time,
timestamp
);
2020-04-27 10:52:04 +00:00
insert_event(ticker, obj, absolute_timestamp, id);
core_util_critical_section_exit();
}
void ticker_insert_event_us(const ticker_data_t *const ticker, ticker_event_t *obj, us_timestamp_t timestamp, uint32_t id)
{
core_util_critical_section_enter();
// update the current timestamp
update_present_time(ticker);
2020-04-27 10:52:04 +00:00
insert_event(ticker, obj, timestamp, id);
core_util_critical_section_exit();
}
void ticker_remove_event(const ticker_data_t *const ticker, ticker_event_t *obj)
{
core_util_critical_section_enter();
ticker_event_queue_t *queue = ticker->queue;
// remove this object from the list
if (queue->head == obj) {
// first in the list, so just drop me
queue->head = obj->next;
schedule_interrupt(ticker);
} else {
// find the object before me, then drop me
ticker_event_t *p = queue->head;
while (p != NULL) {
if (p->next == obj) {
p->next = obj->next;
break;
}
p = p->next;
}
}
core_util_critical_section_exit();
}
timestamp_t ticker_read(const ticker_data_t *const ticker)
{
return ticker_read_us(ticker);
}
us_timestamp_t ticker_read_us(const ticker_data_t *const ticker)
{
2018-12-21 19:41:47 +00:00
us_timestamp_t ret;
initialize(ticker);
core_util_critical_section_enter();
update_present_time(ticker);
2018-12-21 19:41:47 +00:00
ret = ticker->queue->present_time;
core_util_critical_section_exit();
2018-12-21 19:41:47 +00:00
return ret;
}
int ticker_get_next_timestamp(const ticker_data_t *const data, timestamp_t *timestamp)
{
int ret = 0;
/* if head is NULL, there are no pending events */
core_util_critical_section_enter();
if (data->queue->head != NULL) {
*timestamp = data->queue->head->timestamp;
ret = 1;
}
core_util_critical_section_exit();
return ret;
}
2020-02-13 09:21:20 +00:00
int ticker_get_next_timestamp_us(const ticker_data_t *const data, us_timestamp_t *timestamp)
{
int ret = 0;
/* if head is NULL, there are no pending events */
core_util_critical_section_enter();
if (data->queue->head != NULL) {
*timestamp = data->queue->head->timestamp;
ret = 1;
}
core_util_critical_section_exit();
return ret;
}
void ticker_suspend(const ticker_data_t *const ticker)
{
core_util_critical_section_enter();
ticker->queue->suspended = true;
core_util_critical_section_exit();
}
void ticker_resume(const ticker_data_t *const ticker)
{
core_util_critical_section_enter();
ticker->queue->suspended = false;
if (ticker->queue->initialized) {
ticker->queue->tick_last_read = ticker->interface->read();
update_present_time(ticker);
schedule_interrupt(ticker);
} else {
initialize(ticker);
}
core_util_critical_section_exit();
}