/* mbed Microcontroller Library * Copyright (c) 2015 ARM Limited * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "hal/ticker_api.h" #include "platform/mbed_critical.h" #include "platform/mbed_assert.h" #include "platform/mbed_error.h" #if !MBED_CONF_TARGET_CUSTOM_TICKERS #include "us_ticker_api.h" #include "lp_ticker_api.h" #endif // It's almost always worth avoiding division, but only worth avoiding // multiplication on some cores. #if defined(__CORTEX_M0) || defined(__CORTEX_M0PLUS) || defined(__CORTEX_M23) #define SLOW_MULTIPLY 1 #else #define SLOW_MULTIPLY 0 #endif // Do we compute ratio from frequency, or can we always get it from defines? #if MBED_CONF_TARGET_CUSTOM_TICKERS || (DEVICE_USTICKER && !defined US_TICKER_PERIOD_NUM) || (DEVICE_LPTICKER && !defined LP_TICKER_PERIOD_NUM) #define COMPUTE_RATIO_FROM_FREQUENCY 1 #else #define COMPUTE_RATIO_FROM_FREQUENCY 0 #endif static void schedule_interrupt(const ticker_data_t *const ticker); static void update_present_time(const ticker_data_t *const ticker); /* Macros that either look up the info from mbed_ticker_queue_t, or give a constant. * Some constants are defined during the definition of initialize, to keep the * compile-time and run-time calculations alongside each other. */ #ifdef MBED_TICKER_CONSTANT_PERIOD_NUM #define TICKER_PERIOD_NUM(queue) MBED_TICKER_CONSTANT_PERIOD_NUM // don't bother doing computing shift - rely on the compiler being able convert "/ 2^k" to ">> k", // except that it's useful to note shift 0 for numerator 1, as that's special-cased #define TICKER_PERIOD_NUM_SHIFTS(queue) (MBED_TICKER_CONSTANT_PERIOD_NUM == 1 ? 0 : -1) #else #define TICKER_PERIOD_NUM(queue) ((queue)->period_num) #define TICKER_PERIOD_NUM_SHIFTS(queue) ((queue)->period_num_shifts) #endif #ifdef MBED_TICKER_CONSTANT_PERIOD_DEN #define TICKER_PERIOD_DEN(queue) MBED_TICKER_CONSTANT_PERIOD_DEN #define TICKER_PERIOD_DEN_SHIFTS(queue) (MBED_TICKER_CONSTANT_PERIOD_DEN == 1 ? 0 : -1) #else #define TICKER_PERIOD_DEN(queue) ((queue)->period_den) #define TICKER_PERIOD_DEN_SHIFTS(queue) ((queue)->period_den_shifts) #endif #if MBED_TICKER_CONSTANT_PERIOD_DEN == 1 #define TICKER_TICK_REMAINDER(queue) 0 #define TICKER_SET_TICK_REMAINDER(queue, rem) ((void)(rem)) #else #define TICKER_TICK_REMAINDER(queue) ((queue)->tick_remainder) #define TICKER_SET_TICK_REMAINDER(queue, rem) ((queue)->tick_remainder = (rem)) #endif // But the above can generate compiler warnings from `if (-1 >= 0) { x >>= -1; }` #if defined ( __CC_ARM ) #pragma diag_suppress 62 // Shift count is negative #elif defined ( __GNUC__ ) #pragma GCC diagnostic ignored "-Wshift-count-negative" #elif defined (__ICCARM__) #pragma diag_suppress=Pe062 // Shift count is negative #endif #ifdef MBED_TICKER_CONSTANT_MASK #define TICKER_BITMASK(queue) MBED_TICKER_CONSTANT_MASK #define TICKER_MAX_DELTA(queue) CONSTANT_MAX_DELTA #else #define TICKER_BITMASK(queue) ((queue)->bitmask) #define TICKER_MAX_DELTA(queue) ((queue)->max_delta) #endif #if defined MBED_TICKER_CONSTANT_PERIOD && defined MBED_TICKER_CONSTANT_MASK #define TICKER_MAX_DELTA_US(queue) CONSTANT_MAX_DELTA_US #else #define TICKER_MAX_DELTA_US(queue) ((queue)->max_delta_us) #endif #if COMPUTE_RATIO_FROM_FREQUENCY static inline uint32_t gcd(uint32_t a, uint32_t b) { do { uint32_t r = a % b; a = b; b = r; } while (b != 0); return a; } static int exact_log2(uint32_t n) { for (int i = 31; i >= 0; --i) { if ((1U << i) == n) { return i; } } return -1; } #endif /* * Initialize a ticker instance. */ static void initialize(const ticker_data_t *ticker) { // return if the queue has already been initialized, in that case the // interface used by the queue is already initialized. if (ticker->queue->initialized) { return; } if (ticker->queue->suspended) { return; } ticker->interface->init(); #if MBED_TRAP_ERRORS_ENABLED || COMPUTE_RATIO_FROM_FREQUENCY || !defined MBED_TICKER_CONSTANT_MASK const ticker_info_t *info = ticker->interface->get_info(); #endif #if !MBED_CONF_TARGET_CUSTOM_TICKERS && MBED_TRAP_ERRORS_ENABLED /* They must be passing us one of the well-known tickers. Check info * rather than the data, to cope with the lp_ticker_wrapper. It doesn't count * as a "custom ticker" for the purpose of this optimization. * * This check has the downside of potentially pulling in code for an unused ticker. * This is minimized by using direct xxx_ticker_get_info() calls rather than * `get_us_ticker_data()->interface->get_info()` which would pull in the entire system, * and we wrap it in `MBED_TRAP_ERRORS_ENABLED`. */ #if DEVICE_USTICKER && DEVICE_LPTICKER MBED_ASSERT(info == us_ticker_get_info() || info == lp_ticker_get_info()); #elif DEVICE_USTICKER MBED_ASSERT(info == us_ticker_get_info()); #elif DEVICE_LPTICKER MBED_ASSERT(info == lp_ticker_get_info()); #else MBED_ASSERT(false); #endif #endif #if COMPUTE_RATIO_FROM_FREQUENCY // Will need to use frequency computation for at least some cases, so always do it // to minimise code size. uint32_t frequency = info->frequency; if (frequency == 0) { #if MBED_TRAP_ERRORS_ENABLED MBED_ERROR( MBED_MAKE_ERROR( MBED_MODULE_HAL, MBED_ERROR_CODE_NOT_READY ), "Ticker frequency is zero" ); #else frequency = 1000000; #endif // MBED_TRAP_ERRORS_ENABLED } const uint32_t period_gcd = gcd(frequency, 1000000); ticker->queue->period_num = 1000000 / period_gcd; ticker->queue->period_num_shifts = exact_log2(ticker->queue->period_num); ticker->queue->period_den = frequency / period_gcd; ticker->queue->period_den_shifts = exact_log2(ticker->queue->period_den); #elif !defined MBED_TICKER_CONSTANT_PERIOD // Have ratio defines, but need to figure out which one applies. // `runs_in_deep_sleep` is a viable proxy. (We have asserts above that // check that they're only passing usticker or lpticker). const bool is_usticker = !DEVICE_LPTICKER || !ticker->interface->runs_in_deep_sleep; #ifndef MBED_TICKER_CONSTANT_PERIOD_NUM ticker->queue->period_num = is_usticker ? US_TICKER_PERIOD_NUM : LP_TICKER_PERIOD_NUM; #endif #ifndef MBED_TICKER_CONSTANT_PERIOD_DEN ticker->queue->period_den = is_usticker ? US_TICKER_PERIOD_DEN : LP_TICKER_PERIOD_DEN; #endif #endif // COMPUTE_RATIO_FROM_FREQUENCY / MBED_TICKER_CONSTANT_PERIOD #ifndef MBED_TICKER_CONSTANT_MASK uint32_t bits = info->bits; if ((bits > 32) || (bits < 4)) { #if MBED_TRAP_ERRORS_ENABLED MBED_ERROR( MBED_MAKE_ERROR( MBED_MODULE_HAL, MBED_ERROR_CODE_INVALID_SIZE ), "Ticker number of bit is greater than 32 or less than 4 bits" ); #else bits = 32; #endif // MBED_TRAP_ERRORS_ENABLED } ticker->queue->bitmask = bits == 32 ? 0xFFFFFFFF : (1U << bits) - 1; ticker->queue->max_delta = 7 << (bits - 4); // 7/16th #else // MBED_TICKER_CONSTANT_MASK #define CONSTANT_MAX_DELTA (7 * ((MBED_TICKER_CONSTANT_MASK >> 4) + 1)) // 7/16th #endif // MBED_TICKER_CONSTANT_MASK #if !(defined MBED_TICKER_CONSTANT_PERIOD && defined MBED_TICKER_CONSTANT_MASK) ticker->queue->max_delta_us = ((uint64_t)TICKER_MAX_DELTA(ticker->queue) * TICKER_PERIOD_NUM(ticker->queue) + TICKER_PERIOD_DEN(ticker->queue) - 1) / TICKER_PERIOD_DEN(ticker->queue); #else #define CONSTANT_MAX_DELTA_US \ (((uint64_t)CONSTANT_MAX_DELTA * MBED_TICKER_CONSTANT_PERIOD_NUM + MBED_TICKER_CONSTANT_PERIOD_DEN - 1) / MBED_TICKER_CONSTANT_PERIOD_DEN) #endif ticker->queue->event_handler = NULL; ticker->queue->head = NULL; ticker->queue->tick_last_read = ticker->interface->read(); TICKER_SET_TICK_REMAINDER(ticker->queue, 0); ticker->queue->present_time = 0; ticker->queue->dispatching = false; ticker->queue->suspended = false; ticker->queue->initialized = true; update_present_time(ticker); schedule_interrupt(ticker); } /** * Set the event handler function of a ticker instance. */ static void set_handler(const ticker_data_t *const ticker, ticker_event_handler handler) { ticker->queue->event_handler = handler; } /* * Convert a 32 bit timestamp into a 64 bit timestamp. * * A 64 bit timestamp is used as the point of time of reference while the * timestamp to convert is relative to this point of time. * * The lower 32 bits of the timestamp returned will be equal to the timestamp to * convert. * * If the timestamp to convert is less than the lower 32 bits of the time * reference then the timestamp to convert is seen as an overflowed value and * the upper 32 bit of the timestamp returned will be equal to the upper 32 bit * of the reference point + 1. * Otherwise, the upper 32 bit returned will be equal to the upper 32 bit of the * reference point. * * @param ref: The 64 bit timestamp of reference. * @param timestamp: The timestamp to convert. */ static us_timestamp_t convert_timestamp(us_timestamp_t ref, timestamp_t timestamp) { bool overflow = timestamp < ((timestamp_t) ref) ? true : false; us_timestamp_t result = (ref & ~((us_timestamp_t)UINT32_MAX)) | timestamp; if (overflow) { result += (1ULL << 32); } return result; } /** * Update the present timestamp value of a ticker. */ static void update_present_time(const ticker_data_t *const ticker) { ticker_event_queue_t *queue = ticker->queue; if (queue->suspended) { return; } uint32_t ticker_time = ticker->interface->read(); if (ticker_time == queue->tick_last_read) { // No work to do return; } uint32_t elapsed_ticks = (ticker_time - queue->tick_last_read) & TICKER_BITMASK(queue); queue->tick_last_read = ticker_time; // Convert elapsed_ticks to elapsed_us as (elapsed_ticks * period_num / period_den) // adding in any remainder from the last division uint64_t scaled_ticks; if (SLOW_MULTIPLY && TICKER_PERIOD_NUM_SHIFTS(queue) >= 0) { scaled_ticks = (uint64_t) elapsed_ticks << TICKER_PERIOD_NUM_SHIFTS(queue); } else { scaled_ticks = (uint64_t) elapsed_ticks * TICKER_PERIOD_NUM(queue); } uint64_t elapsed_us; if (TICKER_PERIOD_DEN_SHIFTS(queue) == 0) { // Optimized for cases that don't need division elapsed_us = scaled_ticks; } else { scaled_ticks += TICKER_TICK_REMAINDER(queue); if (TICKER_PERIOD_DEN_SHIFTS(queue) >= 0) { // Speed-optimised for shifts elapsed_us = scaled_ticks >> TICKER_PERIOD_DEN_SHIFTS(queue); TICKER_SET_TICK_REMAINDER(queue, scaled_ticks - (elapsed_us << TICKER_PERIOD_DEN_SHIFTS(queue))); } else { // General case division elapsed_us = scaled_ticks / TICKER_PERIOD_DEN(queue); TICKER_SET_TICK_REMAINDER(queue, scaled_ticks - elapsed_us * TICKER_PERIOD_DEN(queue)); } } // Update current time queue->present_time += elapsed_us; } /** * Given the absolute timestamp compute the hal tick timestamp rounded up. */ static timestamp_t compute_tick_round_up(const ticker_data_t *const ticker, us_timestamp_t timestamp) { ticker_event_queue_t *queue = ticker->queue; us_timestamp_t delta_us = timestamp - queue->present_time; timestamp_t delta = TICKER_MAX_DELTA(queue); if (delta_us <= TICKER_MAX_DELTA_US(queue)) { // Checking max_delta_us ensures the operation will not overflow // Convert delta_us to delta (ticks) as (delta_us * period_den / period_num) // taking care to round up if num != 1 uint64_t scaled_delta; if (SLOW_MULTIPLY && TICKER_PERIOD_DEN_SHIFTS(queue) >= 0) { // Optimized denominators divisible by 2 scaled_delta = delta_us << TICKER_PERIOD_DEN_SHIFTS(queue); } else { // General case scaled_delta = delta_us * TICKER_PERIOD_DEN(queue); } if (TICKER_PERIOD_NUM_SHIFTS(queue) == 0) { delta = scaled_delta; } else { scaled_delta += TICKER_PERIOD_NUM(queue) - 1; if (TICKER_PERIOD_NUM_SHIFTS(queue) >= 0) { // Optimized numerators divisible by 2 delta = scaled_delta >> TICKER_PERIOD_NUM_SHIFTS(queue); } else { // General case delta = scaled_delta / TICKER_PERIOD_NUM(queue); } } if (delta > TICKER_MAX_DELTA(queue)) { delta = TICKER_MAX_DELTA(queue); } } return (queue->tick_last_read + delta) & TICKER_BITMASK(queue); } //NOTE: Must be called from critical section! static void insert_event(const ticker_data_t *const ticker, ticker_event_t *obj, us_timestamp_t timestamp, uint32_t id) { ticker_event_queue_t *queue = ticker->queue; // initialise our data obj->timestamp = timestamp; obj->id = id; /* Go through the list until we either reach the end, or find an element this should come before (which is possibly the head). */ ticker_event_t *prev = NULL, *p = queue->head; while (p != NULL) { /* check if we come before p */ if (timestamp < p->timestamp) { break; } /* go to the next element */ prev = p; p = p->next; } /* if we're at the end p will be NULL, which is correct */ obj->next = p; /* if prev is NULL we're at the head */ if (prev == NULL) { queue->head = obj; } else { prev->next = obj; } if (prev == NULL || timestamp <= queue->present_time) { schedule_interrupt(ticker); } } /** * Return 1 if the tick has incremented to or past match_tick, otherwise 0. */ int _ticker_match_interval_passed(timestamp_t prev_tick, timestamp_t cur_tick, timestamp_t match_tick) { if (match_tick > prev_tick) { return (cur_tick >= match_tick) || (cur_tick < prev_tick); } else { return (cur_tick < prev_tick) && (cur_tick >= match_tick); } } /** * Compute the time when the interrupt has to be triggered and schedule it. * * If there is no event in the queue or the next event to execute is in more * than ticker.queue.max_delta ticks from now then the ticker irq will be * scheduled in ticker.queue.max_delta ticks. Otherwise the irq will be * scheduled to happen when the running counter reach the timestamp of the * first event in the queue. * * @note If there is no event in the queue then the interrupt is scheduled to * in ticker.queue.max_delta. This is necessary to keep track * of the timer overflow. */ static void schedule_interrupt(const ticker_data_t *const ticker) { ticker_event_queue_t *queue = ticker->queue; if (queue->suspended || queue->dispatching) { // Don't schedule the next interrupt until dispatching is // finished. This prevents repeated calls to interface->set_interrupt return; } update_present_time(ticker); if (queue->head) { us_timestamp_t present = queue->present_time; us_timestamp_t match_time = queue->head->timestamp; // if the event at the head of the queue is in the past then schedule // it immediately. if (match_time <= present) { ticker->interface->fire_interrupt(); return; } timestamp_t match_tick = compute_tick_round_up(ticker, match_time); // The same tick should never occur since match_tick is rounded up. // If the same tick is returned scheduling will not work correctly. MBED_ASSERT(match_tick != queue->tick_last_read); ticker->interface->set_interrupt(match_tick); timestamp_t cur_tick = ticker->interface->read(); if (_ticker_match_interval_passed(queue->tick_last_read, cur_tick, match_tick)) { ticker->interface->fire_interrupt(); } } else { uint32_t match_tick = (queue->tick_last_read + TICKER_MAX_DELTA(queue)) & TICKER_BITMASK(queue); ticker->interface->set_interrupt(match_tick); } } void ticker_set_handler(const ticker_data_t *const ticker, ticker_event_handler handler) { initialize(ticker); core_util_critical_section_enter(); set_handler(ticker, handler); core_util_critical_section_exit(); } void ticker_irq_handler(const ticker_data_t *const ticker) { core_util_critical_section_enter(); ticker_event_queue_t *queue = ticker->queue; ticker->interface->clear_interrupt(); if (queue->suspended) { core_util_critical_section_exit(); return; } /* Go through all the pending TimerEvents */ queue->dispatching = true; while (1) { if (queue->head == NULL) { break; } // update the current timestamp used by the queue update_present_time(ticker); if (queue->head->timestamp <= queue->present_time) { // This event was in the past: // point to the following one and execute its handler ticker_event_t *p = ticker->queue->head; queue->head = queue->head->next; if (queue->event_handler != NULL) { (*queue->event_handler)(p->id); // NOTE: the handler can set new events } /* Note: We continue back to examining the head because calling the * event handler may have altered the chain of pending events. */ } else { break; } } queue->dispatching = false; schedule_interrupt(ticker); core_util_critical_section_exit(); } void ticker_insert_event(const ticker_data_t *const ticker, ticker_event_t *obj, timestamp_t timestamp, uint32_t id) { core_util_critical_section_enter(); // update the current timestamp update_present_time(ticker); us_timestamp_t absolute_timestamp = convert_timestamp( ticker->queue->present_time, timestamp ); insert_event(ticker, obj, absolute_timestamp, id); core_util_critical_section_exit(); } void ticker_insert_event_us(const ticker_data_t *const ticker, ticker_event_t *obj, us_timestamp_t timestamp, uint32_t id) { core_util_critical_section_enter(); // update the current timestamp update_present_time(ticker); insert_event(ticker, obj, timestamp, id); core_util_critical_section_exit(); } void ticker_remove_event(const ticker_data_t *const ticker, ticker_event_t *obj) { core_util_critical_section_enter(); ticker_event_queue_t *queue = ticker->queue; // remove this object from the list if (queue->head == obj) { // first in the list, so just drop me queue->head = obj->next; schedule_interrupt(ticker); } else { // find the object before me, then drop me ticker_event_t *p = queue->head; while (p != NULL) { if (p->next == obj) { p->next = obj->next; break; } p = p->next; } } core_util_critical_section_exit(); } timestamp_t ticker_read(const ticker_data_t *const ticker) { return ticker_read_us(ticker); } us_timestamp_t ticker_read_us(const ticker_data_t *const ticker) { us_timestamp_t ret; initialize(ticker); core_util_critical_section_enter(); update_present_time(ticker); ret = ticker->queue->present_time; core_util_critical_section_exit(); return ret; } int ticker_get_next_timestamp(const ticker_data_t *const data, timestamp_t *timestamp) { int ret = 0; /* if head is NULL, there are no pending events */ core_util_critical_section_enter(); if (data->queue->head != NULL) { *timestamp = data->queue->head->timestamp; ret = 1; } core_util_critical_section_exit(); return ret; } int ticker_get_next_timestamp_us(const ticker_data_t *const data, us_timestamp_t *timestamp) { int ret = 0; /* if head is NULL, there are no pending events */ core_util_critical_section_enter(); if (data->queue->head != NULL) { *timestamp = data->queue->head->timestamp; ret = 1; } core_util_critical_section_exit(); return ret; } void ticker_suspend(const ticker_data_t *const ticker) { core_util_critical_section_enter(); ticker->queue->suspended = true; core_util_critical_section_exit(); } void ticker_resume(const ticker_data_t *const ticker) { core_util_critical_section_enter(); ticker->queue->suspended = false; if (ticker->queue->initialized) { ticker->queue->tick_last_read = ticker->interface->read(); update_present_time(ticker); schedule_interrupt(ticker); } else { initialize(ticker); } core_util_critical_section_exit(); }