mbed-os/targets/TARGET_NORDIC/TARGET_NRF5/us_ticker.c

638 lines
21 KiB
C
Raw Normal View History

/*
2016-07-01 15:20:37 +00:00
* Copyright (c) 2013 Nordic Semiconductor ASA
* All rights reserved.
*
2016-07-01 15:20:37 +00:00
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list
2016-07-01 15:20:37 +00:00
* of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA
* integrated circuit in a product or a software update for such product, must reproduce
* the above copyright notice, this list of conditions and the following disclaimer in
2016-07-01 15:20:37 +00:00
* the documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific prior
2016-07-01 15:20:37 +00:00
* written permission.
*
* 4. This software, with or without modification, must only be used with a
2016-07-01 15:20:37 +00:00
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary or object form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
2016-07-01 15:20:37 +00:00
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
2016-07-01 15:20:37 +00:00
#include "us_ticker_api.h"
#include "common_rtc.h"
#include "app_util.h"
#include "nrf_drv_common.h"
#include "lp_ticker_api.h"
#include "mbed_critical.h"
#if defined(NRF52_ERRATA_20)
#include "softdevice_handler.h"
#endif
//------------------------------------------------------------------------------
// Common stuff used also by lp_ticker and rtc_api (see "common_rtc.h").
//
#include "app_util_platform.h"
bool m_common_rtc_enabled = false;
uint32_t volatile m_common_rtc_overflows = 0;
__STATIC_INLINE void rtc_ovf_event_check(void)
{
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW)) {
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW);
// Don't disable this event. It shall occur periodically.
++m_common_rtc_overflows;
}
}
#if defined(TARGET_MCU_NRF51822)
void common_rtc_irq_handler(void)
#else
void COMMON_RTC_IRQ_HANDLER(void)
#endif
{
rtc_ovf_event_check();
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, US_TICKER_EVENT)) {
us_ticker_irq_handler();
}
#if DEVICE_LOWPOWERTIMER
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, LP_TICKER_EVENT)) {
lp_ticker_irq_handler();
}
#endif
}
// Function for fix errata 20: RTC Register values are invalid
__STATIC_INLINE void errata_20(void)
{
#if defined(NRF52_ERRATA_20)
if (!softdevice_handler_is_enabled())
{
NRF_CLOCK->EVENTS_LFCLKSTARTED = 0;
NRF_CLOCK->TASKS_LFCLKSTART = 1;
while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0)
{
}
}
NRF_RTC1->TASKS_STOP = 0;
#endif
}
#if (defined (__ICCARM__)) && defined(TARGET_MCU_NRF51822)//IAR
__stackless __task
#endif
void RTC1_IRQHandler(void);
void common_rtc_init(void)
{
if (m_common_rtc_enabled) {
return;
}
errata_20();
NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler);
// RTC is driven by the low frequency (32.768 kHz) clock, a proper request
// must be made to have it running.
// Currently this clock is started in 'SystemInit' (see "system_nrf51.c"
// or "system_nrf52.c", respectively).
nrf_rtc_prescaler_set(COMMON_RTC_INSTANCE, 0);
2016-06-23 10:27:18 +00:00
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT);
#if defined(TARGET_MCU_NRF51822)
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT);
#endif
#if DEVICE_LOWPOWERTIMER
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, LP_TICKER_EVENT);
#endif
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW);
2016-06-23 10:27:18 +00:00
// Interrupts on all related events are enabled permanently. Particular
// events will be enabled or disabled as needed (such approach is more
// energy efficient).
nrf_rtc_int_enable(COMMON_RTC_INSTANCE,
2017-04-28 11:13:27 +00:00
#if DEVICE_LOWPOWERTIMER
LP_TICKER_INT_MASK |
2017-04-28 11:13:27 +00:00
#endif
US_TICKER_INT_MASK |
NRF_RTC_INT_OVERFLOW_MASK);
2016-06-23 10:27:18 +00:00
// This event is enabled permanently, since overflow indications are needed
// continuously.
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK);
// All other relevant events are initially disabled.
nrf_rtc_event_disable(COMMON_RTC_INSTANCE,
2017-04-28 11:13:27 +00:00
#if defined(TARGET_MCU_NRF51822)
OS_TICK_INT_MASK |
2017-04-28 11:13:27 +00:00
#endif
#if DEVICE_LOWPOWERTIMER
LP_TICKER_INT_MASK |
2017-04-28 11:13:27 +00:00
#endif
US_TICKER_INT_MASK);
2016-06-23 10:27:18 +00:00
nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE),
#ifdef NRF51
APP_IRQ_PRIORITY_LOW
#elif defined(NRF52) || defined(NRF52840_XXAA)
APP_IRQ_PRIORITY_LOWEST
#endif
);
nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START);
m_common_rtc_enabled = true;
}
__STATIC_INLINE void rtc_ovf_event_safe_check(void)
{
core_util_critical_section_enter();
rtc_ovf_event_check();
core_util_critical_section_exit();
}
uint32_t common_rtc_32bit_ticks_get(void)
{
uint32_t ticks;
uint32_t prev_overflows;
do {
prev_overflows = m_common_rtc_overflows;
ticks = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
// The counter used for time measurements is less than 32 bit wide,
// so its value is complemented with the number of registered overflows
// of the counter.
ticks += (m_common_rtc_overflows << RTC_COUNTER_BITS);
// Check in case that OVF occurred during execution of a RTC handler (apply if call was from RTC handler)
// m_common_rtc_overflows might been updated in this call.
rtc_ovf_event_safe_check();
// If call was made from a low priority level m_common_rtc_overflows might have been updated in RTC handler.
} while (m_common_rtc_overflows != prev_overflows);
return ticks;
}
uint64_t common_rtc_64bit_us_get(void)
{
uint32_t ticks = common_rtc_32bit_ticks_get();
// [ticks -> microseconds]
return ROUNDED_DIV(((uint64_t)ticks) * 1000000, RTC_INPUT_FREQ);
}
void common_rtc_set_interrupt(uint32_t us_timestamp, uint32_t cc_channel,
uint32_t int_mask)
{
// The internal counter is clocked with a frequency that cannot be easily
// multiplied to 1 MHz, therefore besides the translation of values
// (microsecond <-> ticks) a special care of overflows handling must be
// taken. Here the 32-bit timestamp value is complemented with information
// about current the system up time of (ticks + number of overflows of tick
// counter on upper bits, converted to microseconds), and such 64-bit value
// is then translated to counter ticks. Finally, the lower 24 bits of thus
// calculated value is written to the counter compare register to prepare
// the interrupt generation.
uint64_t current_time64 = common_rtc_64bit_us_get();
// [add upper 32 bits from the current time to the timestamp value]
uint64_t timestamp64 = us_timestamp +
(current_time64 & ~(uint64_t)0xFFFFFFFF);
// [if the original timestamp value happens to be after the 32 bit counter
// of microsends overflows, correct the upper 32 bits accordingly]
if (us_timestamp < (uint32_t)(current_time64 & 0xFFFFFFFF)) {
timestamp64 += ((uint64_t)1 << 32);
}
// [microseconds -> ticks, always round the result up to avoid too early
// interrupt generation]
uint32_t compare_value =
(uint32_t)CEIL_DIV((timestamp64) * RTC_INPUT_FREQ, 1000000);
core_util_critical_section_enter();
// The COMPARE event occurs when the value in compare register is N and
// the counter value changes from N-1 to N. Therefore, the minimal safe
// difference between the compare value to be set and the current counter
// value is 2 ticks. This guarantees that the compare trigger is properly
// setup before the compare condition occurs.
uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2;
if ((int)(compare_value - closest_safe_compare) <= 0) {
compare_value = closest_safe_compare;
}
nrf_rtc_cc_set(COMMON_RTC_INSTANCE, cc_channel, RTC_WRAP(compare_value));
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, int_mask);
core_util_critical_section_exit();
}
//------------------------------------------------------------------------------
void us_ticker_init(void)
{
common_rtc_init();
}
uint32_t us_ticker_read()
{
us_ticker_init();
return (uint32_t)common_rtc_64bit_us_get();
}
void us_ticker_set_interrupt(timestamp_t timestamp)
{
common_rtc_set_interrupt(timestamp,
US_TICKER_CC_CHANNEL, US_TICKER_INT_MASK);
}
void us_ticker_disable_interrupt(void)
{
2016-06-23 10:27:18 +00:00
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, US_TICKER_INT_MASK);
}
void us_ticker_clear_interrupt(void)
{
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT);
}
2016-07-22 10:39:09 +00:00
// Since there is no SysTick on NRF51, the RTC1 channel 1 is used as an
// alternative source of RTOS ticks.
#if defined(TARGET_MCU_NRF51822)
#include "mbed_toolchain.h"
#define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1)
/**
* The value previously set in the capture compare register of channel 1
*/
static uint32_t previous_tick_cc_value = 0;
/*
RTX provide the following definitions which are used by the tick code:
* os_trv: The number (minus 1) of clock cycle between two tick.
* os_clockrate: Time duration between two ticks (in us).
* OS_Tick_Handler: The function which handle a tick event.
This function is special because it never returns.
Those definitions are used by the code which handle the os tick.
To allow compilation of us_ticker programs without RTOS, those symbols are
exported from this module as weak ones.
*/
MBED_WEAK uint32_t const os_trv;
MBED_WEAK uint32_t const os_clockrate;
2017-04-28 11:13:27 +00:00
MBED_WEAK void OS_Tick_Handler(void)
{
}
#if defined (__CC_ARM) /* ARMCC Compiler */
__asm void COMMON_RTC_IRQ_HANDLER(void)
{
IMPORT OS_Tick_Handler
IMPORT common_rtc_irq_handler
/**
* Chanel 1 of RTC1 is used by RTX as a systick.
* If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
* Otherwise, just execute common_rtc_irq_handler.
* This function has to be written in assembly and tagged as naked because OS_Tick_Handler
* will never return.
* A c function would put lr on the stack before calling OS_Tick_Handler and this value
* would never been dequeued.
*
* \code
* void COMMON_RTC_IRQ_HANDLER(void) {
if(NRF_RTC1->EVENTS_COMPARE[1]) {
// never return...
OS_Tick_Handler();
} else {
common_rtc_irq_handler();
}
}
* \endcode
*/
ldr r0,=0x40011144
ldr r1, [r0, #0]
cmp r1, #0
beq US_TICKER_HANDLER
bl OS_Tick_Handler
US_TICKER_HANDLER
push {r3, lr}
bl common_rtc_irq_handler
pop {r3, pc}
; ALIGN ;
}
#elif defined (__GNUC__) /* GNU Compiler */
__attribute__((naked)) void COMMON_RTC_IRQ_HANDLER(void)
{
/**
* Chanel 1 of RTC1 is used by RTX as a systick.
* If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
* Otherwise, just execute common_rtc_irq_handler.
* This function has to be written in assembly and tagged as naked because OS_Tick_Handler
* will never return.
* A c function would put lr on the stack before calling OS_Tick_Handler and this value
* would never been dequeued.
*
* \code
* void COMMON_RTC_IRQ_HANDLER(void) {
if(NRF_RTC1->EVENTS_COMPARE[1]) {
// never return...
OS_Tick_Handler();
} else {
common_rtc_irq_handler();
}
}
* \endcode
*/
__asm__ (
"ldr r0,=0x40011144\n"
"ldr r1, [r0, #0]\n"
"cmp r1, #0\n"
"beq US_TICKER_HANDLER\n"
"bl OS_Tick_Handler\n"
"US_TICKER_HANDLER:\n"
"push {r3, lr}\n"
"bl common_rtc_irq_handler\n"
"pop {r3, pc}\n"
"nop"
);
}
#elif defined (__ICCARM__)//IAR
void common_rtc_irq_handler(void);
__stackless __task void COMMON_RTC_IRQ_HANDLER(void)
{
uint32_t temp;
__asm volatile(
" ldr %[temp], [%[reg2check]] \n"
" cmp %[temp], #0 \n"
" beq 1f \n"
" bl.w OS_Tick_Handler \n"
"1: \n"
" push {r3, lr}\n"
" blx %[rtc_irq] \n"
" pop {r3, pc}\n"
: /* Outputs */
[temp] "=&r"(temp)
: /* Inputs */
[reg2check] "r"(0x40011144),
[rtc_irq] "r"(common_rtc_irq_handler)
: /* Clobbers */
"cc"
);
(void)temp;
}
#else
#error Compiler not supported.
#error Provide a definition of COMMON_RTC_IRQ_HANDLER.
/*
* Chanel 1 of RTC1 is used by RTX as a systick.
* If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
* Otherwise, just execute common_rtc_irq_handler.
* This function has to be written in assembly and tagged as naked because OS_Tick_Handler
* will never return.
* A c function would put lr on the stack before calling OS_Tick_Handler and this value
* will never been dequeued. After a certain time a stack overflow will happen.
*
* \code
* void COMMON_RTC_IRQ_HANDLER(void) {
if(NRF_RTC1->EVENTS_COMPARE[1]) {
// never return...
OS_Tick_Handler();
} else {
common_rtc_irq_handler();
}
}
* \endcode
*/
#endif
/**
* Return the next number of clock cycle needed for the next tick.
* @note This function has been carrefuly optimized for a systick occuring every 1000us.
*/
2017-04-28 11:13:27 +00:00
static uint32_t get_next_tick_cc_delta()
{
uint32_t delta = 0;
if (os_clockrate != 1000) {
// In RTX, by default SYSTICK is is used.
// A tick event is generated every os_trv + 1 clock cycles of the system timer.
delta = os_trv + 1;
} else {
// If the clockrate is set to 1000us then 1000 tick should happen every second.
// Unfortunatelly, when clockrate is set to 1000, os_trv is equal to 31.
// If (os_trv + 1) is used as the delta value between two ticks, 1000 ticks will be
// generated in 32000 clock cycle instead of 32768 clock cycles.
// As a result, if a user schedule an OS timer to start in 100s, the timer will start
// instead after 97.656s
// The code below fix this issue, a clock rate of 1000s will generate 1000 ticks in 32768
// clock cycles.
// The strategy is simple, for 1000 ticks:
// * 768 ticks will occur 33 clock cycles after the previous tick
// * 232 ticks will occur 32 clock cycles after the previous tick
// By default every delta is equal to 33.
// Every five ticks (20%, 200 delta in one second), the delta is equal to 32
// The remaining (32) deltas equal to 32 are distributed using primes numbers.
static uint32_t counter = 0;
if ((counter % 5) == 0 || (counter % 31) == 0 || (counter % 139) == 0 || (counter == 503)) {
delta = 32;
} else {
delta = 33;
}
++counter;
if (counter == 1000) {
counter = 0;
}
}
return delta;
}
2017-04-28 11:13:27 +00:00
static inline void clear_tick_interrupt()
{
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT);
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK);
}
/**
* Indicate if a value is included in a range which can be wrapped.
* @param begin start of the range
* @param end end of the range
* @param val value to check
* @return true if the value is included in the range and false otherwise.
*/
2017-04-28 11:13:27 +00:00
static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t val)
{
// regular case, begin < end
// return true if begin <= val < end
if (begin < end) {
if (begin <= val && val < end) {
return true;
} else {
return false;
}
} else {
// In this case end < begin because it has wrap around the limits
// return false if end < val < begin
if (end < val && val < begin) {
return false;
} else {
return true;
}
}
}
/**
* Register the next tick.
*/
2017-04-28 11:13:27 +00:00
static void register_next_tick()
{
previous_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL);
uint32_t delta = get_next_tick_cc_delta();
uint32_t new_compare_value = (previous_tick_cc_value + delta) & MAX_RTC_COUNTER_VAL;
// Disable irq directly for few cycles,
// Validation of the new CC value against the COUNTER,
// Setting the new CC value and enabling CC IRQ should be an atomic operation
// Otherwise, there is a possibility to set an invalid CC value because
// the RTC1 keeps running.
// This code is very short 20-38 cycles in the worst case, it shouldn't
// disturb softdevice.
__disable_irq();
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
// If an overflow occur, set the next tick in COUNTER + delta clock cycles
if (is_in_wrapped_range(previous_tick_cc_value, new_compare_value, current_counter + 1) == false) {
new_compare_value = current_counter + delta;
}
nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, new_compare_value);
// Enable generation of the compare event for the value set above (this
// event will trigger the interrupt).
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK);
__enable_irq();
}
/**
* Initialize alternative hardware timer as RTX kernel timer
* This function is directly called by RTX.
* @note this function shouldn't be called directly.
* @return IRQ number of the alternative hardware timer
*/
int os_tick_init (void)
{
common_rtc_init();
nrf_rtc_int_enable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK);
nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, 0);
register_next_tick();
return nrf_drv_get_IRQn(COMMON_RTC_INSTANCE);
}
/**
* Acknowledge the tick interrupt.
* This function is called by the function OS_Tick_Handler of RTX.
* @note this function shouldn't be called directly.
*/
void os_tick_irqack(void)
{
clear_tick_interrupt();
register_next_tick();
}
/**
* Returns the overflow flag of the alternative hardware timer.
* @note This function is exposed by RTX kernel.
* @return 1 if the timer has overflowed and 0 otherwise.
*/
2017-04-28 11:13:27 +00:00
uint32_t os_tick_ovf(void)
{
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL);
return is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter) ? 0 : 1;
}
/**
* Return the value of the alternative hardware timer.
* @note The documentation is not very clear about what is expected as a result,
* is it an ascending counter, a descending one ?
* None of this is specified.
* The default systick is a descending counter and this function return values in
* descending order, even if the internal counter used is an ascending one.
* @return the value of the alternative hardware timer.
*/
2017-04-28 11:13:27 +00:00
uint32_t os_tick_val(void)
{
uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
uint32_t next_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL);
// do not use os_tick_ovf because its counter value can be different
if(is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter)) {
if (next_tick_cc_value > previous_tick_cc_value) {
return next_tick_cc_value - current_counter;
} else if(current_counter <= next_tick_cc_value) {
return next_tick_cc_value - current_counter;
} else {
return next_tick_cc_value + (MAX_RTC_COUNTER_VAL - current_counter);
}
} else {
// use (os_trv + 1) has the base step, can be totally inacurate ...
uint32_t clock_cycles_by_tick = os_trv + 1;
// if current counter has wrap arround, add the limit to it.
if (current_counter < next_tick_cc_value) {
current_counter = current_counter + MAX_RTC_COUNTER_VAL;
}
return clock_cycles_by_tick - ((current_counter - next_tick_cc_value) % clock_cycles_by_tick);
}
}
#endif // defined(TARGET_MCU_NRF51822)