Restored alternative method of RTOS tick generation for NRF51, which was undesirably removed when the new us_ticker implementation was introduced.

pull/2234/head
Głąbek, Andrzej 2016-06-22 14:00:30 +02:00
parent 6c7d15d381
commit 601b96dde2
9 changed files with 435 additions and 689 deletions

View File

@ -138,7 +138,7 @@
#define RTC0_INSTANCE_INDEX 0
#endif
#define RTC1_ENABLED 1
#define RTC1_ENABLED 0
#if (RTC1_ENABLED == 1)
#define RTC1_CONFIG_FREQUENCY 32768

View File

@ -138,7 +138,7 @@
#define RTC0_INSTANCE_INDEX 0
#endif
#define RTC1_ENABLED 1
#define RTC1_ENABLED 0
#if (RTC1_ENABLED == 1)
#define RTC1_CONFIG_FREQUENCY 32768

View File

@ -14,21 +14,26 @@
* limitations under the License.
*/
#ifndef RTC_COMMON_H
#define RTC_COMMON_H
#ifndef COMMON_RTC_H
#define COMMON_RTC_H
#include "nrf_drv_rtc.h"
#include "nrf_rtc.h"
#define RTC_COUNTER_BITS 24
#define RTC_COUNTER_BITS 24u
#define LP_TICKER_CC_CHANNEL 0
#define US_TICKER_CC_CHANNEL 1
// Instance 0 is reserved for SoftDevice.
// Instance 1 is used as a common one for us_ticker, lp_ticker and (in case
// of NRF51) as an alternative tick source for RTOS.
#define COMMON_RTC_INSTANCE NRF_RTC1
extern nrf_drv_rtc_t const m_rtc_common;
extern bool m_rtc_common_enabled;
extern uint32_t volatile m_rtc_common_overflows;
#define US_TICKER_CC_CHANNEL 0
#define OS_TICK_CC_CHANNEL 1
#define LP_TICKER_CC_CHANNEL 2
void rtc_common_init(void);
uint32_t rtc_common_32bit_ticks_get(void);
extern bool m_common_rtc_enabled;
extern uint32_t volatile m_common_rtc_overflows;
#endif // RTC_COMMON_H
void common_rtc_init(void);
uint32_t common_rtc_32bit_ticks_get(void);
#endif // COMMON_RTC_H

View File

@ -17,42 +17,37 @@
#if DEVICE_LOWPOWERTIMER
#include "rtc_common.h"
#include "common_rtc.h"
#include "sleep_api.h"
void lp_ticker_init(void)
{
rtc_common_init();
common_rtc_init();
}
uint32_t lp_ticker_read(void)
{
return rtc_common_32bit_ticks_get();
return common_rtc_32bit_ticks_get();
}
void lp_ticker_set_interrupt(uint32_t now, uint32_t time)
{
(void)now;
// The passed 32-bit 'time' value is wrapped properly by the driver, so it
// is usable by the 24-bit counter.
ret_code_t result = nrf_drv_rtc_cc_set(&m_rtc_common, LP_TICKER_CC_CHANNEL,
time, true);
if (result != NRF_SUCCESS)
{
MBED_ASSERT(false);
}
nrf_rtc_cc_set(COMMON_RTC_INSTANCE, LP_TICKER_CC_CHANNEL, RTC_WRAP(time));
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_COMPARE_2);
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_COMPARE2_MASK);
}
uint32_t lp_ticker_get_overflows_counter(void)
{
// Cut out the part of 'm_rtc_common_overflows' used by
// 'rtc_common_32bit_ticks_get()'.
return (m_rtc_common_overflows >> (32 - RTC_COUNTER_BITS));
// Cut out the part of 'm_common_rtc_overflows' used by
// 'common_rtc_32bit_ticks_get()'.
return (m_common_rtc_overflows >> (32u - RTC_COUNTER_BITS));
}
uint32_t lp_ticker_get_compare_match(void)
{
return nrf_rtc_cc_get(m_rtc_common.p_reg, LP_TICKER_CC_CHANNEL);
return nrf_rtc_cc_get(COMMON_RTC_INSTANCE, LP_TICKER_CC_CHANNEL);
}
void lp_ticker_sleep_until(uint32_t now, uint32_t time)

View File

@ -0,0 +1,329 @@
/* mbed Microcontroller Library
* Copyright (c) 2013 Nordic Semiconductor
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined(TARGET_MCU_NRF51822)
#include "common_rtc.h"
#include "toolchain.h"
#include "nrf_delay.h"
#define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1)
/**
* The value previously set in the capture compare register of channel 1
*/
static uint32_t previous_tick_cc_value = 0;
/*
RTX provide the following definitions which are used by the tick code:
* os_trv: The number (minus 1) of clock cycle between two tick.
* os_clockrate: Time duration between two ticks (in us).
* OS_Tick_Handler: The function which handle a tick event.
This function is special because it never returns.
Those definitions are used by the code which handle the os tick.
To allow compilation of us_ticker programs without RTOS, those symbols are
exported from this module as weak ones.
*/
MBED_WEAK uint32_t const os_trv;
MBED_WEAK uint32_t const os_clockrate;
MBED_WEAK void OS_Tick_Handler() { }
#if defined (__CC_ARM) /* ARMCC Compiler */
__asm void RTC1_IRQHandler(void)
{
IMPORT OS_Tick_Handler
IMPORT common_rtc_irq_handler
/**
* Chanel 1 of RTC1 is used by RTX as a systick.
* If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
* Otherwise, just execute common_rtc_irq_handler.
* This function has to be written in assembly and tagged as naked because OS_Tick_Handler
* will never return.
* A c function would put lr on the stack before calling OS_Tick_Handler and this value
* would never been dequeued.
*
* \code
* void RTC1_IRQHandler(void) {
if(NRF_RTC1->EVENTS_COMPARE[1]) {
// never return...
OS_Tick_Handler();
} else {
common_rtc_irq_handler();
}
}
* \endcode
*/
ldr r0,=0x40011144
ldr r1, [r0, #0]
cmp r1, #0
beq US_TICKER_HANDLER
bl OS_Tick_Handler
US_TICKER_HANDLER
push {r3, lr}
bl common_rtc_irq_handler
pop {r3, pc}
nop /* padding */
}
#elif defined (__GNUC__) /* GNU Compiler */
__attribute__((naked)) void RTC1_IRQHandler(void)
{
/**
* Chanel 1 of RTC1 is used by RTX as a systick.
* If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
* Otherwise, just execute common_rtc_irq_handler.
* This function has to be written in assembly and tagged as naked because OS_Tick_Handler
* will never return.
* A c function would put lr on the stack before calling OS_Tick_Handler and this value
* would never been dequeued.
*
* \code
* void RTC1_IRQHandler(void) {
if(NRF_RTC1->EVENTS_COMPARE[1]) {
// never return...
OS_Tick_Handler();
} else {
common_rtc_irq_handler();
}
}
* \endcode
*/
__asm__ (
"ldr r0,=0x40011144\n"
"ldr r1, [r0, #0]\n"
"cmp r1, #0\n"
"beq US_TICKER_HANDLER\n"
"bl OS_Tick_Handler\n"
"US_TICKER_HANDLER:\n"
"push {r3, lr}\n"
"bl common_rtc_irq_handler\n"
"pop {r3, pc}\n"
"nop"
);
}
#else
#error Compiler not supported.
#error Provide a definition of RTC1_IRQHandler.
/*
* Chanel 1 of RTC1 is used by RTX as a systick.
* If the compare event on channel 1 is set, then branch to OS_Tick_Handler.
* Otherwise, just execute common_rtc_irq_handler.
* This function has to be written in assembly and tagged as naked because OS_Tick_Handler
* will never return.
* A c function would put lr on the stack before calling OS_Tick_Handler and this value
* will never been dequeued. After a certain time a stack overflow will happen.
*
* \code
* void RTC1_IRQHandler(void) {
if(NRF_RTC1->EVENTS_COMPARE[1]) {
// never return...
OS_Tick_Handler();
} else {
common_rtc_irq_handler();
}
}
* \endcode
*/
#endif
/**
* Return the next number of clock cycle needed for the next tick.
* @note This function has been carrefuly optimized for a systick occuring every 1000us.
*/
static uint32_t get_next_tick_cc_delta() {
uint32_t delta = 0;
if (os_clockrate != 1000) {
// In RTX, by default SYSTICK is is used.
// A tick event is generated every os_trv + 1 clock cycles of the system timer.
delta = os_trv + 1;
} else {
// If the clockrate is set to 1000us then 1000 tick should happen every second.
// Unfortunatelly, when clockrate is set to 1000, os_trv is equal to 31.
// If (os_trv + 1) is used as the delta value between two ticks, 1000 ticks will be
// generated in 32000 clock cycle instead of 32768 clock cycles.
// As a result, if a user schedule an OS timer to start in 100s, the timer will start
// instead after 97.656s
// The code below fix this issue, a clock rate of 1000s will generate 1000 ticks in 32768
// clock cycles.
// The strategy is simple, for 1000 ticks:
// * 768 ticks will occur 33 clock cycles after the previous tick
// * 232 ticks will occur 32 clock cycles after the previous tick
// By default every delta is equal to 33.
// Every five ticks (20%, 200 delta in one second), the delta is equal to 32
// The remaining (32) deltas equal to 32 are distributed using primes numbers.
static uint32_t counter = 0;
if ((counter % 5) == 0 || (counter % 31) == 0 || (counter % 139) == 0 || (counter == 503)) {
delta = 32;
} else {
delta = 33;
}
++counter;
if (counter == 1000) {
counter = 0;
}
}
return delta;
}
static inline void clear_tick_interrupt() {
NRF_RTC1->EVENTS_COMPARE[1] = 0;
NRF_RTC1->EVTENCLR = (1 << 17);
}
/**
* Indicate if a value is included in a range which can be wrapped.
* @param begin start of the range
* @param end end of the range
* @param val value to check
* @return true if the value is included in the range and false otherwise.
*/
static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t val) {
// regular case, begin < end
// return true if begin <= val < end
if (begin < end) {
if (begin <= val && val < end) {
return true;
} else {
return false;
}
} else {
// In this case end < begin because it has wrap around the limits
// return false if end < val < begin
if (end < val && val < begin) {
return false;
} else {
return true;
}
}
}
/**
* Register the next tick.
*/
static void register_next_tick() {
previous_tick_cc_value = NRF_RTC1->CC[1];
uint32_t delta = get_next_tick_cc_delta();
uint32_t new_compare_value = (previous_tick_cc_value + delta) & MAX_RTC_COUNTER_VAL;
// Disable irq directly for few cycles,
// Validation of the new CC value against the COUNTER,
// Setting the new CC value and enabling CC IRQ should be an atomic operation
// Otherwise, there is a possibility to set an invalid CC value because
// the RTC1 keeps running.
// This code is very short 20-38 cycles in the worst case, it shouldn't
// disturb softdevice.
__disable_irq();
uint32_t current_counter = NRF_RTC1->COUNTER;
// If an overflow occur, set the next tick in COUNTER + delta clock cycles
if (is_in_wrapped_range(previous_tick_cc_value, new_compare_value, current_counter) == false) {
new_compare_value = current_counter + delta;
}
NRF_RTC1->CC[1] = new_compare_value;
// set the interrupt of CC channel 1 and reenable IRQs
NRF_RTC1->INTENSET = RTC_INTENSET_COMPARE1_Msk;
__enable_irq();
}
/**
* Initialize alternative hardware timer as RTX kernel timer
* This function is directly called by RTX.
* @note this function shouldn't be called directly.
* @return IRQ number of the alternative hardware timer
*/
int os_tick_init (void)
{
common_rtc_init();
NRF_RTC1->CC[1] = 0;
clear_tick_interrupt();
register_next_tick();
return RTC1_IRQn;
}
/**
* Acknowledge the tick interrupt.
* This function is called by the function OS_Tick_Handler of RTX.
* @note this function shouldn't be called directly.
*/
void os_tick_irqack(void)
{
clear_tick_interrupt();
register_next_tick();
}
/**
* Returns the overflow flag of the alternative hardware timer.
* @note This function is exposed by RTX kernel.
* @return 1 if the timer has overflowed and 0 otherwise.
*/
uint32_t os_tick_ovf(void) {
uint32_t current_counter = NRF_RTC1->COUNTER;
uint32_t next_tick_cc_value = NRF_RTC1->CC[1];
return is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter) ? 0 : 1;
}
/**
* Return the value of the alternative hardware timer.
* @note The documentation is not very clear about what is expected as a result,
* is it an ascending counter, a descending one ?
* None of this is specified.
* The default systick is a descending counter and this function return values in
* descending order, even if the internal counter used is an ascending one.
* @return the value of the alternative hardware timer.
*/
uint32_t os_tick_val(void) {
uint32_t current_counter = NRF_RTC1->COUNTER;
uint32_t next_tick_cc_value = NRF_RTC1->CC[1];
// do not use os_tick_ovf because its counter value can be different
if(is_in_wrapped_range(previous_tick_cc_value, next_tick_cc_value, current_counter)) {
if (next_tick_cc_value > previous_tick_cc_value) {
return next_tick_cc_value - current_counter;
} else if(current_counter <= next_tick_cc_value) {
return next_tick_cc_value - current_counter;
} else {
return next_tick_cc_value + (MAX_RTC_COUNTER_VAL - current_counter);
}
} else {
// use (os_trv + 1) has the base step, can be totally inacurate ...
uint32_t clock_cycles_by_tick = os_trv + 1;
// if current counter has wrap arround, add the limit to it.
if (current_counter < next_tick_cc_value) {
current_counter = current_counter + MAX_RTC_COUNTER_VAL;
}
return clock_cycles_by_tick - ((current_counter - next_tick_cc_value) % clock_cycles_by_tick);
}
return 0;
}
#endif // defined(TARGET_MCU_NRF51822)

View File

@ -17,7 +17,7 @@
#if DEVICE_RTC
#include "rtc_common.h"
#include "common_rtc.h"
#include "nrf_drv_clock.h"
#include "app_util_platform.h"
@ -25,7 +25,7 @@ static time_t m_time_base;
void rtc_init(void)
{
rtc_common_init();
common_rtc_init();
}
void rtc_free(void)
@ -37,16 +37,16 @@ void rtc_free(void)
int rtc_isenabled(void)
{
return m_rtc_common_enabled;
return m_common_rtc_enabled;
}
static uint32_t rtc_seconds_get(void)
{
// Convert current counter value to seconds.
uint32_t seconds = nrf_drv_rtc_counter_get(&m_rtc_common) / RTC_INPUT_FREQ;
uint32_t seconds = nrf_rtc_counter_get(COMMON_RTC_INSTANCE) / RTC_INPUT_FREQ;
// Add proper amount of seconds for each registered overflow of the counter.
uint32_t seconds_per_overflow = (1 << RTC_COUNTER_BITS) / RTC_INPUT_FREQ;
return (seconds + (m_rtc_common_overflows * seconds_per_overflow));
uint32_t seconds_per_overflow = (1uL << RTC_COUNTER_BITS) / RTC_INPUT_FREQ;
return (seconds + (m_common_rtc_overflows * seconds_per_overflow));
}
time_t rtc_read(void)

View File

@ -1,290 +0,0 @@
/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#include "nrf_drv_rtc.h"
#include "nrf_rtc.h"
#include "nrf_assert.h"
#include "app_util_platform.h"
/**@brief RTC driver instance control block structure. */
typedef struct
{
nrf_drv_state_t state; /**< Instance state. */
bool reliable; /**< Reliable mode flag. */
uint8_t tick_latency; /**< Maximum length of interrupt handler in ticks (max 7.7 ms). */
} nrf_drv_rtc_cb_t;
// User callbacks local storage.
static nrf_drv_rtc_handler_t m_handlers[RTC_COUNT];
static nrf_drv_rtc_cb_t m_cb[RTC_COUNT];
static const nrf_drv_rtc_config_t m_default_config[] = {
#if RTC0_ENABLED
NRF_DRV_RTC_DEFAULT_CONFIG(0),
#endif
#if RTC1_ENABLED
NRF_DRV_RTC_DEFAULT_CONFIG(1),
#endif
#if RTC2_ENABLED
NRF_DRV_RTC_DEFAULT_CONFIG(2)
#endif
};
ret_code_t nrf_drv_rtc_init(nrf_drv_rtc_t const * const p_instance,
nrf_drv_rtc_config_t const * p_config,
nrf_drv_rtc_handler_t handler)
{
if (handler)
{
m_handlers[p_instance->instance_id] = handler;
}
else
{
return NRF_ERROR_INVALID_PARAM;
}
if (p_config == NULL)
{
p_config = &m_default_config[p_instance->instance_id];
}
if (m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED)
{
return NRF_ERROR_INVALID_STATE;
}
nrf_drv_common_irq_enable(p_instance->irq, p_config->interrupt_priority);
nrf_rtc_prescaler_set(p_instance->p_reg, p_config->prescaler);
m_cb[p_instance->instance_id].reliable = p_config->reliable;
m_cb[p_instance->instance_id].tick_latency = p_config->tick_latency;
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED;
return NRF_SUCCESS;
}
void nrf_drv_rtc_uninit(nrf_drv_rtc_t const * const p_instance)
{
uint32_t mask = NRF_RTC_INT_TICK_MASK |
NRF_RTC_INT_OVERFLOW_MASK |
NRF_RTC_INT_COMPARE0_MASK |
NRF_RTC_INT_COMPARE1_MASK |
NRF_RTC_INT_COMPARE2_MASK |
NRF_RTC_INT_COMPARE3_MASK;
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
nrf_drv_common_irq_disable(p_instance->irq);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP);
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED;
}
void nrf_drv_rtc_enable(nrf_drv_rtc_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_INITIALIZED);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_START);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_POWERED_ON;
}
void nrf_drv_rtc_disable(nrf_drv_rtc_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_POWERED_ON);
nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP);
m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED;
}
ret_code_t nrf_drv_rtc_cc_disable(nrf_drv_rtc_t const * const p_instance, uint32_t channel)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(channel<p_instance->cc_channel_count);
uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel);
nrf_rtc_event_t event = RTC_CHANNEL_EVENT_ADDR(channel);
nrf_rtc_event_disable(p_instance->p_reg,int_mask);
if (nrf_rtc_int_is_enabled(p_instance->p_reg,int_mask))
{
nrf_rtc_int_disable(p_instance->p_reg,int_mask);
if (nrf_rtc_event_pending(p_instance->p_reg,event))
{
nrf_rtc_event_clear(p_instance->p_reg,event);
return NRF_ERROR_TIMEOUT;
}
}
return NRF_SUCCESS;
}
ret_code_t nrf_drv_rtc_cc_set(nrf_drv_rtc_t const * const p_instance,
uint32_t channel,
uint32_t val,
bool enable_irq)
{
ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
ASSERT(channel<p_instance->cc_channel_count);
uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel);
nrf_rtc_event_t event = RTC_CHANNEL_EVENT_ADDR(channel);
nrf_rtc_event_disable(p_instance->p_reg, int_mask);
nrf_rtc_int_disable(p_instance->p_reg, int_mask);
val = RTC_WRAP(val);
if (m_cb[p_instance->instance_id].reliable)
{
nrf_rtc_cc_set(p_instance->p_reg,channel,val);
uint32_t cnt = nrf_rtc_counter_get(p_instance->p_reg);
int32_t diff = cnt - val;
if (cnt < val)
{
diff += RTC_COUNTER_COUNTER_Msk;
}
if (diff < m_cb[p_instance->instance_id].tick_latency)
{
return NRF_ERROR_TIMEOUT;
}
}
else
{
nrf_rtc_cc_set(p_instance->p_reg,channel,val);
}
if (enable_irq)
{
nrf_rtc_event_clear(p_instance->p_reg,event);
nrf_rtc_int_enable(p_instance->p_reg, int_mask);
}
nrf_rtc_event_enable(p_instance->p_reg,int_mask);
return NRF_SUCCESS;
}
void nrf_drv_rtc_tick_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq)
{
nrf_rtc_event_t event = NRF_RTC_EVENT_TICK;
uint32_t mask = NRF_RTC_INT_TICK_MASK;
nrf_rtc_event_clear(p_instance->p_reg, event);
nrf_rtc_event_enable(p_instance->p_reg, mask);
if (enable_irq)
{
nrf_rtc_int_enable(p_instance->p_reg, mask);
}
}
void nrf_drv_rtc_tick_disable(nrf_drv_rtc_t const * const p_instance)
{
uint32_t mask = NRF_RTC_INT_TICK_MASK;
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
}
void nrf_drv_rtc_overflow_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq)
{
nrf_rtc_event_t event = NRF_RTC_EVENT_OVERFLOW;
uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK;
nrf_rtc_event_clear(p_instance->p_reg, event);
nrf_rtc_event_enable(p_instance->p_reg, mask);
if (enable_irq)
{
nrf_rtc_int_enable(p_instance->p_reg, mask);
}
}
void nrf_drv_rtc_overflow_disable(nrf_drv_rtc_t const * const p_instance)
{
uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK;
nrf_rtc_event_disable(p_instance->p_reg, mask);
nrf_rtc_int_disable(p_instance->p_reg, mask);
}
uint32_t nrf_drv_rtc_max_ticks_get(nrf_drv_rtc_t const * const p_instance)
{
ASSERT(m_cb[p_instance->instance_id].reliable);
uint32_t ticks;
if (m_cb[p_instance->instance_id].reliable)
{
ticks = RTC_COUNTER_COUNTER_Msk - m_cb[p_instance->instance_id].tick_latency;
}
else
{
ticks = RTC_COUNTER_COUNTER_Msk;
}
return ticks;
}
/**@brief Generic function for handling RTC interrupt
*
* @param[in] p_reg Pointer to instance register structure.
* @param[in] instance_id Index of instance.
*/
__STATIC_INLINE void nrf_drv_rtc_int_handler(NRF_RTC_Type * p_reg,
uint32_t instance_id,
uint32_t channel_count)
{
uint32_t i;
uint32_t int_mask = (uint32_t)NRF_RTC_INT_COMPARE0_MASK;
nrf_rtc_event_t event = NRF_RTC_EVENT_COMPARE_0;
for (i = 0; i < channel_count; i++)
{
if (nrf_rtc_int_is_enabled(p_reg,int_mask) && nrf_rtc_event_pending(p_reg,event))
{
nrf_rtc_event_disable(p_reg,int_mask);
nrf_rtc_int_disable(p_reg,int_mask);
nrf_rtc_event_clear(p_reg,event);
m_handlers[instance_id]((nrf_drv_rtc_int_type_t)i);
}
int_mask <<= 1;
event = (nrf_rtc_event_t)((uint32_t)event + sizeof(uint32_t));
}
event = NRF_RTC_EVENT_TICK;
if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_TICK_MASK) &&
nrf_rtc_event_pending(p_reg, event))
{
nrf_rtc_event_clear(p_reg, event);
m_handlers[instance_id](NRF_DRV_RTC_INT_TICK);
}
event = NRF_RTC_EVENT_OVERFLOW;
if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_OVERFLOW_MASK) &&
nrf_rtc_event_pending(p_reg, event))
{
nrf_rtc_event_clear(p_reg,event);
m_handlers[instance_id](NRF_DRV_RTC_INT_OVERFLOW);
}
}
#if RTC0_ENABLED
void RTC0_IRQHandler(void)
{
nrf_drv_rtc_int_handler(NRF_RTC0,RTC0_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(0));
}
#endif
#if RTC1_ENABLED
void RTC1_IRQHandler(void)
{
nrf_drv_rtc_int_handler(NRF_RTC1,RTC1_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(1));
}
#endif
#if RTC2_ENABLED
void RTC2_IRQHandler(void)
{
nrf_drv_rtc_int_handler(NRF_RTC2,RTC2_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(2));
}
#endif

View File

@ -1,325 +0,0 @@
/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved.
*
* The information contained herein is property of Nordic Semiconductor ASA.
* Terms and conditions of usage are described in detail in NORDIC
* SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
*
* Licensees are granted free, non-transferable use of the information. NO
* WARRANTY of ANY KIND is provided. This heading must NOT be removed from
* the file.
*
*/
#ifndef NRF_DRV_RTC_H
#define NRF_DRV_RTC_H
#include "nordic_common.h"
#include "nrf_drv_config.h"
#include "nrf_drv_common.h"
#include "nrf_rtc.h"
#include "sdk_errors.h"
/**
* @addtogroup nrf_rtc RTC HAL and driver
* @ingroup nrf_drivers
* @brief Real timer counter (RTC) APIs.
* @details The RTC HAL provides basic APIs for accessing the registers of the real time counter (RTC).
* The RTC driver provides APIs on a higher level.
*
* @defgroup nrf_drv_rtc RTC driver
* @{
* @ingroup nrf_rtc
* @brief Real timer counter (RTC) driver.
*/
/**@brief Macro to convert microseconds into ticks. */
#define RTC_US_TO_TICKS(us,freq) ((us*freq)/1000000)
/**
* @enum nrf_drv_rtc_int_type_t
* @brief RTC driver interrupt types.
*/
typedef enum
{
NRF_DRV_RTC_INT_COMPARE0 = 0, /**< Interrupt from COMPARE0 event. */
NRF_DRV_RTC_INT_COMPARE1 = 1, /**< Interrupt from COMPARE1 event. */
NRF_DRV_RTC_INT_COMPARE2 = 2, /**< Interrupt from COMPARE2 event. */
NRF_DRV_RTC_INT_COMPARE3 = 3, /**< Interrupt from COMPARE3 event. */
NRF_DRV_RTC_INT_TICK = 4, /**< Interrupt from TICK event. */
NRF_DRV_RTC_INT_OVERFLOW = 5 /**< Interrupt from OVERFLOW event. */
} nrf_drv_rtc_int_type_t;
/**@brief RTC driver instance structure. */
typedef struct
{
NRF_RTC_Type * p_reg; /**< Pointer to instance register set. */
IRQn_Type irq; /**< Instance IRQ ID. */
uint8_t instance_id; /**< Instance index. */
uint8_t cc_channel_count; /**< Number of capture/compare channels. */
} nrf_drv_rtc_t;
/**@brief Macro for creating RTC driver instance.*/
#define NRF_DRV_RTC_INSTANCE(id) \
{ \
.p_reg = CONCAT_2(NRF_RTC, id), \
.irq = CONCAT_3(RTC, id, _IRQn), \
.instance_id = CONCAT_3(RTC, id, _INSTANCE_INDEX),\
.cc_channel_count = NRF_RTC_CC_CHANNEL_COUNT(id), \
}
/**@brief RTC driver instance configuration structure. */
typedef struct
{
uint16_t prescaler; /**< Prescaler. */
uint8_t interrupt_priority; /**< Interrupt priority. */
uint8_t tick_latency; /**< Maximum length of interrupt handler in ticks (max 7.7 ms). */
bool reliable; /**< Reliable mode flag. */
} nrf_drv_rtc_config_t;
/**@brief RTC instance default configuration. */
#define NRF_DRV_RTC_DEFAULT_CONFIG(id) \
{ \
.prescaler = (uint16_t)(RTC_INPUT_FREQ / CONCAT_3(RTC, id, _CONFIG_FREQUENCY))-1, \
.interrupt_priority = CONCAT_3(RTC, id, _CONFIG_IRQ_PRIORITY), \
.reliable = CONCAT_3(RTC, id, _CONFIG_RELIABLE), \
.tick_latency = RTC_US_TO_TICKS(NRF_MAXIMUM_LATENCY_US, CONCAT_3(RTC, id, _CONFIG_FREQUENCY)), \
}
/**@brief RTC driver instance handler type. */
typedef void (*nrf_drv_rtc_handler_t)(nrf_drv_rtc_int_type_t int_type);
/**@brief Function for initializing the RTC driver instance.
*
* After initialization, the instance is in power off state.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] p_config Initial configuration. Default configuration used if NULL.
* @param[in] handler User's event handler.
*
* @retval NRF_SUCCESS If successfully initialized.
* @retval NRF_ERROR_INVALID_PARAM If no handler was provided.
* @retval NRF_ERROR_INVALID_STATE If the instance is already initialized.
*/
ret_code_t nrf_drv_rtc_init(nrf_drv_rtc_t const * const p_instance,
nrf_drv_rtc_config_t const * p_config,
nrf_drv_rtc_handler_t handler);
/**@brief Function for uninitializing the RTC driver instance.
*
* After uninitialization, the instance is in idle state. The hardware should return to the state
* before initialization. The function asserts if the instance is in idle state.
*
* @param[in] p_instance Pointer to the instance.
*/
void nrf_drv_rtc_uninit(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for enabling the RTC driver instance.
*
* @note Function asserts if instance is enabled.
*
* @param[in] p_instance Pointer to the instance.
*/
void nrf_drv_rtc_enable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for disabling the RTC driver instance.
*
* @note Function asserts if instance is disabled.
*
* @param[in] p_instance Pointer to instance.
*/
void nrf_drv_rtc_disable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for setting a compare channel.
*
* The function asserts if the instance is not initialized or if the channel parameter is
* wrong. The function powers on the instance if the instance was in power off state.
*
* The driver is not entering a critical section when configuring RTC, which means that it can be
* preempted for a certain amount of time. When the driver was preempted and the value to be set
* is short in time, there is a risk that the driver sets a compare value that is
* behind. If RTCn_CONFIG_RELIABLE is 1 for the given instance, the Reliable mode handles that case.
* However, to detect if the requested value is behind, this mode makes the following assumptions:
* - The maximum preemption time in ticks (8-bit value) is known and is less than 7.7 ms
* (for prescaler = 0, RTC frequency 32 kHz).
* - The requested absolute compare value is not bigger than (0x00FFFFFF)-tick_latency. It is
* the user's responsibility to ensure that.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] channel One of the instance's channels.
* @param[in] val Absolute value to be set in the compare register.
* @param[in] enable_irq True to enable the interrupt. False to disable the interrupt.
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_TIMEOUT If the compare was not set because the request value is behind the current counter
* value. This error can only be reported if RTCn_CONFIG_RELIABLE = 1.
*/
ret_code_t nrf_drv_rtc_cc_set(nrf_drv_rtc_t const * const p_instance,
uint32_t channel,
uint32_t val,
bool enable_irq);
/**@brief Function for disabling a channel.
*
* This function disables channel events and channel interrupts. The function asserts if the instance is not
* initialized or if the channel parameter is wrong.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] channel One of the instance's channels.
*
* @retval NRF_SUCCESS If the procedure was successful.
* @retval NRF_ERROR_TIMEOUT If an interrupt was pending on the requested channel.
*/
ret_code_t nrf_drv_rtc_cc_disable(nrf_drv_rtc_t const * const p_instance, uint32_t channel);
/**@brief Function for enabling tick.
*
* This function enables the tick event and optionally the interrupt. The function asserts if the instance is not
* powered on.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] enable_irq True to enable the interrupt. False to disable the interrupt.
*/
void nrf_drv_rtc_tick_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq);
/**@brief Function for disabling tick.
*
* This function disables the tick event and interrupt.
*
* @param[in] p_instance Pointer to the instance.
*/
void nrf_drv_rtc_tick_disable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for enabling overflow.
*
* This function enables the overflow event and optionally the interrupt. The function asserts if the instance is
* not powered on.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] enable_irq True to enable the interrupt. False to disable the interrupt.
*/
void nrf_drv_rtc_overflow_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq);
/**@brief Function for disabling overflow.
*
* This function disables the overflow event and interrupt.
*
* @param[in] p_instance Pointer to the instance.
*/
void nrf_drv_rtc_overflow_disable(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for getting the maximum relative ticks value that can be set in the compare channel.
*
* When a SoftDevice is used, it occupies the highest level interrupt, so that the application code can be
* interrupted at any moment for a certain period of time. If Reliable mode is enabled, the provided
* maximum latency is taken into account and the return value is smaller than the RTC counter
* resolution. If Reliable mode is disabled, the return value equals the counter resolution.
*
* @param[in] p_instance Pointer to the instance.
*
* @retval ticks Maximum ticks value.
*/
uint32_t nrf_drv_rtc_max_ticks_get(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for disabling all instance interrupts.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] p_mask Pointer to the location where the mask is filled.
*/
__STATIC_INLINE void nrf_drv_rtc_int_disable(nrf_drv_rtc_t const * const p_instance,
uint32_t * p_mask);
/**@brief Function for enabling instance interrupts.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] mask Mask of interrupts to enable.
*/
__STATIC_INLINE void nrf_drv_rtc_int_enable(nrf_drv_rtc_t const * const p_instance, uint32_t mask);
/**@brief Function for retrieving the current counter value.
*
* This function asserts if the instance is not powered on or if p_val is NULL.
*
* @param[in] p_instance Pointer to the instance.
*
* @retval value Counter value.
*/
__STATIC_INLINE uint32_t nrf_drv_rtc_counter_get(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for clearing the counter value.
*
* This function asserts if the instance is not powered on.
*
* @param[in] p_instance Pointer to the instance.
*/
__STATIC_INLINE void nrf_drv_rtc_counter_clear(nrf_drv_rtc_t const * const p_instance);
/**@brief Function for returning a requested task address for the RTC driver instance.
*
* This function asserts if the output pointer is NULL. The task address can be used by the PPI module.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] task One of the peripheral tasks.
*
* @retval Address of task register.
*/
__STATIC_INLINE uint32_t nrf_drv_rtc_task_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_task_t task);
/**@brief Function for returning a requested event address for the RTC driver instance.
*
* This function asserts if the output pointer is NULL. The event address can be used by the PPI module.
*
* @param[in] p_instance Pointer to the instance.
* @param[in] event One of the peripheral events.
*
* @retval Address of event register.
*/
__STATIC_INLINE uint32_t nrf_drv_rtc_event_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_event_t event);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
__STATIC_INLINE void nrf_drv_rtc_int_disable(nrf_drv_rtc_t const * const p_instance,
uint32_t * p_mask)
{
*p_mask = nrf_rtc_int_get(p_instance->p_reg);
nrf_rtc_int_disable(p_instance->p_reg, NRF_RTC_INT_TICK_MASK |
NRF_RTC_INT_OVERFLOW_MASK |
NRF_RTC_INT_COMPARE0_MASK |
NRF_RTC_INT_COMPARE1_MASK |
NRF_RTC_INT_COMPARE2_MASK |
NRF_RTC_INT_COMPARE3_MASK);
}
__STATIC_INLINE void nrf_drv_rtc_int_enable(nrf_drv_rtc_t const * const p_instance, uint32_t mask)
{
nrf_rtc_int_enable(p_instance->p_reg, mask);
}
__STATIC_INLINE uint32_t nrf_drv_rtc_counter_get(nrf_drv_rtc_t const * const p_instance)
{
return nrf_rtc_counter_get(p_instance->p_reg);
}
__STATIC_INLINE void nrf_drv_rtc_counter_clear(nrf_drv_rtc_t const * const p_instance)
{
nrf_rtc_task_trigger(p_instance->p_reg,NRF_RTC_TASK_CLEAR);
}
__STATIC_INLINE uint32_t nrf_drv_rtc_task_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_task_t task)
{
return nrf_rtc_task_address_get(p_instance->p_reg, task);
}
__STATIC_INLINE uint32_t nrf_drv_rtc_event_address_get(nrf_drv_rtc_t const * const p_instance,
nrf_rtc_event_t event)
{
return nrf_rtc_event_address_get(p_instance->p_reg, event);
}
#endif /* SUPPRESS_INLINE_IMPLEMENTATION */
/**
*@}
**/
#endif /* NRF_DRV_RTC_H */

View File

@ -14,63 +14,95 @@
* limitations under the License.
*/
#include "us_ticker_api.h"
#include "rtc_common.h"
#include "common_rtc.h"
#include "app_util.h"
//------------------------------------------------------------------------------
// Common stuff used also by lp_ticker and rtc_api (see "rtc_common.h").
// Common stuff used also by lp_ticker and rtc_api (see "common_rtc.h").
//
#include "nrf_drv_clock.h"
#include "app_util_platform.h"
nrf_drv_rtc_t const m_rtc_common = NRF_DRV_RTC_INSTANCE(1);
bool m_rtc_common_enabled = false;
uint32_t volatile m_rtc_common_overflows = 0;
bool m_common_rtc_enabled = false;
uint32_t volatile m_common_rtc_overflows = 0;
static void irq_handler(nrf_drv_rtc_int_type_t int_type)
#if defined(TARGET_MCU_NRF51822)
void common_rtc_irq_handler(void)
#else
void RTC1_IRQHandler(void)
#endif
{
if (int_type == (NRF_DRV_RTC_INT_COMPARE0 + US_TICKER_CC_CHANNEL)) {
nrf_rtc_event_t event;
uint32_t int_mask;
event = NRF_RTC_EVENT_COMPARE_0;
int_mask = NRF_RTC_INT_COMPARE0_MASK;
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, event))
{
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, event);
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, int_mask);
us_ticker_irq_handler();
}
else if (int_type == NRF_DRV_RTC_INT_OVERFLOW) {
++m_rtc_common_overflows;
#if DEVICE_LOWPOWERTIMER
event = NRF_RTC_EVENT_COMPARE_2;
int_mask = NRF_RTC_INT_COMPARE2_MASK;
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, event))
{
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, event);
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, int_mask);
}
#endif
event = NRF_RTC_EVENT_OVERFLOW;
if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, event))
{
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, event);
++m_common_rtc_overflows;
}
}
void rtc_common_init(void)
void common_rtc_init(void)
{
if (m_rtc_common_enabled) {
if (m_common_rtc_enabled) {
return;
}
(void)nrf_drv_clock_init();
// RTC is driven by the low frequency (32.768 kHz) clock, a proper request
// must be made to have it running.
nrf_drv_clock_lfclk_request(NULL);
// Currently this clock is started in 'SystemInit' (see "system_nrf51.c"
// or "system_nrf52.c", respectively).
nrf_drv_rtc_config_t const config = {
.prescaler = 0, // no prescaling
.interrupt_priority = APP_IRQ_PRIORITY_LOW,
.reliable = false
};
if (nrf_drv_rtc_init(&m_rtc_common, &config, irq_handler) != NRF_SUCCESS) {
MBED_ASSERT(false); // initialization failed
return;
}
nrf_drv_rtc_overflow_enable(&m_rtc_common, true);
nrf_rtc_prescaler_set(COMMON_RTC_INSTANCE, 0);
nrf_drv_rtc_enable(&m_rtc_common);
m_rtc_common_enabled = true;
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW);
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK);
nrf_rtc_int_enable(COMMON_RTC_INSTANCE,
NRF_RTC_INT_COMPARE0_MASK |
#if defined(TARGET_MCU_NRF51822)
NRF_RTC_INT_COMPARE1_MASK |
#endif
#if DEVICE_LOWPOWERTIMER
NRF_RTC_INT_COMPARE2_MASK |
#endif
NRF_RTC_INT_OVERFLOW_MASK);
nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE),
APP_IRQ_PRIORITY_LOW);
nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START);
m_common_rtc_enabled = true;
}
uint32_t rtc_common_32bit_ticks_get(void)
uint32_t common_rtc_32bit_ticks_get(void)
{
uint32_t ticks = nrf_drv_rtc_counter_get(&m_rtc_common);
uint32_t ticks = nrf_rtc_counter_get(COMMON_RTC_INSTANCE);
// The counter used for time measurements is less than 32 bit wide,
// so its value is complemented with the number of registered overflows
// of the counter.
ticks += (m_rtc_common_overflows << RTC_COUNTER_BITS);
ticks += (m_common_rtc_overflows << RTC_COUNTER_BITS);
return ticks;
}
//------------------------------------------------------------------------------
@ -78,12 +110,12 @@ uint32_t rtc_common_32bit_ticks_get(void)
void us_ticker_init(void)
{
rtc_common_init();
common_rtc_init();
}
static uint64_t us_ticker_64bit_get(void)
{
uint32_t ticks = rtc_common_32bit_ticks_get();
uint32_t ticks = common_rtc_32bit_ticks_get();
// [ticks -> microseconds]
return ROUNDED_DIV(((uint64_t)ticks) * 1000000, RTC_INPUT_FREQ);
}
@ -122,24 +154,24 @@ void us_ticker_set_interrupt(timestamp_t timestamp)
// difference between the compare value to be set and the current counter
// value is 2 ticks. This guarantees that the compare trigger is properly
// setup before the compare condition occurs.
uint32_t closest_safe_compare = rtc_common_32bit_ticks_get() + 2;
uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2;
if ((int)(compare_value - closest_safe_compare) <= 0) {
compare_value = closest_safe_compare;
}
ret_code_t result = nrf_drv_rtc_cc_set(&m_rtc_common, US_TICKER_CC_CHANNEL,
compare_value, true);
if (result != NRF_SUCCESS) {
MBED_ASSERT(false);
}
nrf_rtc_cc_set(COMMON_RTC_INSTANCE, US_TICKER_CC_CHANNEL,
RTC_WRAP(compare_value));
nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_COMPARE_0);
nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_COMPARE0_MASK);
}
void us_ticker_disable_interrupt(void)
{
nrf_drv_rtc_cc_disable(&m_rtc_common, US_TICKER_CC_CHANNEL);
nrf_rtc_event_disable(COMMON_RTC_INSTANCE, NRF_RTC_INT_COMPARE0_MASK);
}
void us_ticker_clear_interrupt(void)
{
// No implementation needed. Interrupt flags are cleared by IRQ handler
// in 'nrf_drv_rtc'.
// No implementation needed. The event that triggers the interrupt is
// cleared in 'common_rtc_irq_handler'.
}