mbed-os/targets/TARGET_Maxim/TARGET_MAX32620/serial_api.c

492 lines
17 KiB
C
Raw Normal View History

2016-08-08 21:20:41 +00:00
/*******************************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include <string.h>
#include "mbed_assert.h"
#include "cmsis.h"
#include "serial_api.h"
#include "uart_regs.h"
#include "ioman_regs.h"
#include "gpio_api.h"
#include "clkman_regs.h"
#include "PeripheralPins.h"
#define DEFAULT_BAUD 9600
#define DEFAULT_STOP 1
#define DEFAULT_PARITY ParityNone
#define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAMING_ERR | \
MXC_F_UART_INTFL_RX_PARITY_ERR | \
MXC_F_UART_INTFL_RX_FIFO_OVERFLOW)
// Variables for managing the stdio UART
int stdio_uart_inited;
serial_t stdio_uart;
// Variables for interrupt driven
static uart_irq_handler irq_handler;
static uint32_t serial_irq_ids[MXC_CFG_UART_INSTANCES];
//******************************************************************************
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
// Determine which uart is associated with each pin
UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
// Make sure that both pins are pointing to the same uart
MBED_ASSERT(uart != (UARTName)NC);
// Ensure that the UART clock is enabled
switch (uart) {
case UART_0:
MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART0_CLK_GATER;
break;
case UART_1:
MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART1_CLK_GATER;
break;
case UART_2:
MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART2_CLK_GATER;
break;
case UART_3:
MXC_CLKMAN->clk_gate_ctrl1 |= MXC_F_CLKMAN_CLK_GATE_CTRL1_UART3_CLK_GATER;
break;
default:
break;
}
// Ensure that the UART clock is enabled
// But don't override the scaler
//
// To support the most common baud rates, 9600 and 115200, we need to
// scale down the uart input clock.
if (!(MXC_CLKMAN->sys_clk_ctrl_8_uart & MXC_F_CLKMAN_SYS_CLK_CTRL_8_UART_UART_CLK_SCALE)) {
2016-08-08 21:20:41 +00:00
switch (SystemCoreClock) {
case RO_FREQ:
MXC_CLKMAN->sys_clk_ctrl_8_uart = MXC_S_CLKMAN_CLK_SCALE_DIV_4;
break;
case (RO_FREQ / 2):
MXC_CLKMAN->sys_clk_ctrl_8_uart = MXC_S_CLKMAN_CLK_SCALE_DIV_2;
break;
default:
MXC_CLKMAN->sys_clk_ctrl_8_uart = MXC_S_CLKMAN_CLK_SCALE_DIV_4;
break;
}
}
// Set the obj pointer to the proper uart
obj->uart = (mxc_uart_regs_t*)uart;
// Set the uart index
obj->index = MXC_UART_GET_IDX(obj->uart);
obj->fifo = (mxc_uart_fifo_regs_t*)MXC_UART_GET_BASE_FIFO(obj->index);
// Configure the pins
pinmap_pinout(tx, PinMap_UART_TX);
pinmap_pinout(rx, PinMap_UART_RX);
// Flush the RX and TX FIFOs, clear the settings
obj->uart->ctrl &= ~(MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN);
obj->uart->ctrl |= (MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN);
// Disable interrupts
obj->uart->inten = 0;
obj->uart->intfl = obj->uart->intfl;
// Configure to default settings
serial_baud(obj, DEFAULT_BAUD);
serial_format(obj, 8, ParityNone, 1);
// Manage stdio UART
if (uart == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
2016-08-08 21:20:41 +00:00
// Enable UART
obj->uart->ctrl |= MXC_F_UART_CTRL_UART_EN;
}
//******************************************************************************
void serial_baud(serial_t *obj, int baudrate)
{
uint32_t baud_setting = 0;
MBED_ASSERT(MXC_CLKMAN->sys_clk_ctrl_8_uart > MXC_S_CLKMAN_CLK_SCALE_DISABLED);
// Calculate the integer and decimal portions
baud_setting = SystemCoreClock / (1<<(MXC_CLKMAN->sys_clk_ctrl_8_uart-1));
baud_setting = baud_setting / (baudrate * 16);
// If the result doesn't fit in the register
MBED_ASSERT(baud_setting <= UINT8_MAX);
obj->uart->baud = baud_setting;
}
//******************************************************************************
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
// Check the validity of the inputs
MBED_ASSERT((data_bits > 4) && (data_bits < 9));
MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) ||
(parity == ParityEven) || (parity == ParityForced1) ||
(parity == ParityForced0));
MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
// Adjust the stop and data bits
stop_bits -= 1;
data_bits -= 5;
// Adjust the parity setting
int mode = 0;
switch (parity) {
case ParityNone:
mode = 0;
break;
case ParityOdd :
mode = 1;
break;
case ParityEven:
mode = 2;
break;
case ParityForced1:
// Hardware does not support forced parity
MBED_ASSERT(0);
break;
case ParityForced0:
// Hardware does not support forced parity
MBED_ASSERT(0);
break;
default:
mode = 0;
break;
}
int temp = obj->uart->ctrl;
temp &= ~(MXC_F_UART_CTRL_DATA_SIZE | MXC_F_UART_CTRL_EXTRA_STOP | MXC_F_UART_CTRL_PARITY);
temp |= (data_bits << MXC_F_UART_CTRL_DATA_SIZE_POS);
temp |= (stop_bits << MXC_F_UART_CTRL_EXTRA_STOP_POS);
temp |= (mode << MXC_F_UART_CTRL_PARITY_POS);
obj->uart->ctrl = temp;
}
//******************************************************************************
void uart_handler(mxc_uart_regs_t* uart, int id)
{
// Check for errors or RX Threshold
if (uart->intfl & (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS)) {
if (serial_irq_ids[id]) {
irq_handler(serial_irq_ids[id], RxIrq);
}
uart->intfl = (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS);
}
// Check for TX Threshold
if (uart->intfl & MXC_F_UART_INTFL_TX_FIFO_AE) {
if (serial_irq_ids[id]) {
irq_handler(serial_irq_ids[id], TxIrq);
}
uart->intfl = MXC_F_UART_INTFL_TX_FIFO_AE;
}
}
void uart0_handler(void) { uart_handler(MXC_UART0, 0); }
void uart1_handler(void) { uart_handler(MXC_UART1, 1); }
void uart2_handler(void) { uart_handler(MXC_UART2, 2); }
void uart3_handler(void) { uart_handler(MXC_UART3, 3); }
//******************************************************************************
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
irq_handler = handler;
serial_irq_ids[obj->index] = id;
}
//******************************************************************************
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
switch (obj->index) {
case 0:
NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler);
NVIC_EnableIRQ(UART0_IRQn);
break;
case 1:
NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler);
NVIC_EnableIRQ(UART1_IRQn);
break;
case 2:
NVIC_SetVector(UART2_IRQn, (uint32_t)uart2_handler);
NVIC_EnableIRQ(UART2_IRQn);
break;
case 3:
NVIC_SetVector(UART3_IRQn, (uint32_t)uart3_handler);
NVIC_EnableIRQ(UART3_IRQn);
break;
default:
MBED_ASSERT(0);
}
if (irq == RxIrq) {
// Enable RX FIFO Threshold Interrupt
if (enable) {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten |= (MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS);
} else {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_FIFO_NOT_EMPTY | UART_ERRORS);
}
} else if (irq == TxIrq) {
// Set TX Almost Empty level to interrupt when empty
MXC_SET_FIELD(&obj->uart->tx_fifo_ctrl, MXC_F_UART_RX_FIFO_CTRL_FIFO_AF_LVL,
(MXC_UART_FIFO_DEPTH - 1) << MXC_F_UART_TX_FIFO_CTRL_FIFO_AE_LVL_POS);
// Enable TX Almost Empty Interrupt
if (enable) {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten |= MXC_F_UART_INTFL_TX_FIFO_AE;
} else {
// Clear pending interrupts
obj->uart->intfl = obj->uart->intfl;
obj->uart->inten &= ~MXC_F_UART_INTFL_TX_FIFO_AE;
}
} else {
MBED_ASSERT(0);
}
}
//******************************************************************************
int serial_getc(serial_t *obj)
{
int c;
// Wait for data to be available
while ((obj->uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY) == 0);
c = *obj->fifo->rx_8;
return c;
}
//******************************************************************************
void serial_putc(serial_t *obj, int c)
{
// Wait for TXFIFO to not be full
while ( ((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY)
>> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS)
2016-08-08 21:20:41 +00:00
>= MXC_UART_FIFO_DEPTH );
// Must clear before every write to the buffer to know that the fifo
// is empty when the TX DONE bit is set
obj->uart->intfl = MXC_F_UART_INTFL_TX_DONE;
*obj->fifo->tx_8 = (uint8_t)c;
}
//******************************************************************************
int serial_readable(serial_t *obj)
{
return (obj->uart->rx_fifo_ctrl & MXC_F_UART_RX_FIFO_CTRL_FIFO_ENTRY);
2016-08-08 21:20:41 +00:00
}
//******************************************************************************
int serial_writable(serial_t *obj)
{
return ( ((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY)
>> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS)
< MXC_UART_FIFO_DEPTH );
2016-08-08 21:20:41 +00:00
}
//******************************************************************************
void serial_clear(serial_t *obj)
{
// Clear the rx and tx fifos
obj->uart->ctrl &= ~(MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN);
obj->uart->ctrl |= (MXC_F_UART_CTRL_RX_FIFO_EN | MXC_F_UART_CTRL_TX_FIFO_EN);
}
//******************************************************************************
void serial_break_set(serial_t *obj)
{
// Make sure that nothing is being sent
while ( ((obj->uart->tx_fifo_ctrl & MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY)
>> MXC_F_UART_TX_FIFO_CTRL_FIFO_ENTRY_POS) > 0);
2016-08-08 21:20:41 +00:00
while (!(obj->uart->intfl & MXC_F_UART_INTFL_TX_DONE));
// Configure the GPIO to output 0
gpio_t tx_gpio;
switch (((UARTName)(obj->uart))) {
case UART_0:
gpio_init_out(&tx_gpio, UART0_TX);
break;
case UART_1:
gpio_init_out(&tx_gpio, UART1_TX);
break;
case UART_2:
gpio_init_out(&tx_gpio, UART2_TX);
break;
case UART_3:
gpio_init_out(&tx_gpio, UART3_TX);
break;
default:
gpio_init_out(&tx_gpio, (PinName)NC);
break;
}
gpio_write(&tx_gpio, 0);
// GPIO is setup now, but we need to map GPIO to the pin
switch (((UARTName)(obj->uart))) {
case UART_0:
MXC_IOMAN->uart0_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ;
MBED_ASSERT((MXC_IOMAN->uart0_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0);
break;
case UART_1:
MXC_IOMAN->uart1_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ;
MBED_ASSERT((MXC_IOMAN->uart1_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0);
break;
case UART_2:
MXC_IOMAN->uart2_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ;
MBED_ASSERT((MXC_IOMAN->uart2_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0);
break;
case UART_3:
MXC_IOMAN->uart3_req &= ~MXC_F_IOMAN_UART_REQ_IO_REQ;
MBED_ASSERT((MXC_IOMAN->uart3_ack & (MXC_F_IOMAN_UART_ACK_IO_MAP | MXC_F_IOMAN_UART_ACK_IO_ACK)) == 0);
break;
default:
break;
}
}
//******************************************************************************
void serial_break_clear(serial_t *obj)
{
// Configure the GPIO to output 1
gpio_t tx_gpio;
switch (((UARTName)(obj->uart))) {
case UART_0:
gpio_init_out(&tx_gpio, UART0_TX);
break;
case UART_1:
gpio_init_out(&tx_gpio, UART1_TX);
break;
case UART_2:
gpio_init_out(&tx_gpio, UART2_TX);
break;
case UART_3:
gpio_init_out(&tx_gpio, UART3_TX);
break;
default:
gpio_init_out(&tx_gpio, (PinName)NC);
break;
}
gpio_write(&tx_gpio, 1);
// Renable UART
switch (((UARTName)(obj->uart))) {
case UART_0:
serial_pinout_tx(UART0_TX);
break;
case UART_1:
serial_pinout_tx(UART1_TX);
break;
case UART_2:
serial_pinout_tx(UART2_TX);
break;
case UART_3:
serial_pinout_tx(UART3_TX);
break;
default:
serial_pinout_tx((PinName)NC);
break;
}
}
//******************************************************************************
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
//******************************************************************************
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
uint32_t ctrl = obj->uart->ctrl;
// Disable hardware flow control
ctrl &= ~(MXC_F_UART_CTRL_RTS_EN | MXC_F_UART_CTRL_CTS_EN);
if (FlowControlNone != type) {
// Check to see if we can use HW flow control
UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
UARTName uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
// Make sure that the pins are pointing to the same UART
MBED_ASSERT(uart != (UARTName)NC);
if ((FlowControlCTS == type) || (FlowControlRTSCTS == type)) {
// Make sure pin is in the PinMap
MBED_ASSERT(uart_cts != (UARTName)NC);
// Enable the pin for CTS function
pinmap_pinout(txflow, PinMap_UART_CTS);
// Enable active-low hardware flow control
ctrl |= (MXC_F_UART_CTRL_CTS_EN | MXC_F_UART_CTRL_CTS_POLARITY);
}
if ((FlowControlRTS == type) || (FlowControlRTSCTS == type)) {
// Make sure pin is in the PinMap
MBED_ASSERT(uart_rts != (UARTName)NC);
// Enable the pin for RTS function
pinmap_pinout(rxflow, PinMap_UART_RTS);
// Enable active-low hardware flow control
ctrl |= (MXC_F_UART_CTRL_RTS_EN | MXC_F_UART_CTRL_RTS_POLARITY);
}
}
obj->uart->ctrl = ctrl;
}