mbed-os/targets/TARGET_STM/pwmout_api.c

302 lines
9.2 KiB
C
Raw Normal View History

/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2015, STMicroelectronics
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*******************************************************************************
*/
#include "pwmout_api.h"
#if DEVICE_PWMOUT
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "PeripheralPins.h"
#include "pwmout_device.h"
static TIM_HandleTypeDef TimHandle;
void pwmout_init(pwmout_t* obj, PinName pin)
{
// Get the peripheral name from the pin and assign it to the object
obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
2015-08-17 09:48:21 +00:00
MBED_ASSERT(obj->pwm != (PWMName)NC);
// Get the functions (timer channel, (non)inverted) from the pin and assign it to the object
uint32_t function = pinmap_function(pin, PinMap_PWM);
MBED_ASSERT(function != (uint32_t)NC);
2015-08-17 09:48:21 +00:00
obj->channel = STM_PIN_CHANNEL(function);
obj->inverted = STM_PIN_INVERTED(function);
// Enable TIM clock
2015-10-29 12:00:12 +00:00
#if defined(TIM1_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_1) __HAL_RCC_TIM1_CLK_ENABLE();
2015-10-29 12:00:12 +00:00
#endif
#if defined(TIM2_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_2) __HAL_RCC_TIM2_CLK_ENABLE();
2015-10-29 12:00:12 +00:00
#endif
#if defined(TIM3_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_3) __HAL_RCC_TIM3_CLK_ENABLE();
2015-10-29 12:00:12 +00:00
#endif
#if defined(TIM4_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_4) __HAL_RCC_TIM4_CLK_ENABLE();
2015-11-12 09:19:56 +00:00
#endif
#if defined(TIM5_BASE)
if (obj->pwm == PWM_5) __HAL_RCC_TIM5_CLK_ENABLE();
2015-10-29 12:00:12 +00:00
#endif
#if defined(TIM8_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_8) __HAL_RCC_TIM8_CLK_ENABLE();
#endif
2015-10-29 12:00:12 +00:00
#if defined(TIM9_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_9) __HAL_RCC_TIM9_CLK_ENABLE();
2015-10-29 12:00:12 +00:00
#endif
#if defined(TIM10_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_10) __HAL_RCC_TIM10_CLK_ENABLE();
2015-10-29 12:00:12 +00:00
#endif
#if defined(TIM11_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_11) __HAL_RCC_TIM11_CLK_ENABLE();
2015-10-29 12:00:12 +00:00
#endif
#if defined(TIM12_BASE)
if (obj->pwm == PWM_12) __HAL_RCC_TIM12_CLK_ENABLE();
#endif
#if defined(TIM13_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_13) __HAL_RCC_TIM13_CLK_ENABLE();
#endif
#if defined(TIM14_BASE)
2015-08-17 09:48:21 +00:00
if (obj->pwm == PWM_14) __HAL_RCC_TIM14_CLK_ENABLE();
#endif
#if defined(TIM15_BASE)
if (obj->pwm == PWM_15) __HAL_RCC_TIM15_CLK_ENABLE();
#endif
#if defined(TIM16_BASE)
if (obj->pwm == PWM_16) __HAL_RCC_TIM16_CLK_ENABLE();
#endif
#if defined(TIM17_BASE)
if (obj->pwm == PWM_17) __HAL_RCC_TIM17_CLK_ENABLE();
#endif
#if defined(TIM18_BASE)
if (obj->pwm == PWM_18) __HAL_RCC_TIM18_CLK_ENABLE();
#endif
#if defined(TIM19_BASE)
if (obj->pwm == PWM_19) __HAL_RCC_TIM19_CLK_ENABLE();
#endif
#if defined(TIM20_BASE)
if (obj->pwm == PWM_20) __HAL_RCC_TIM20_CLK_ENABLE();
#endif
#if defined(TIM21_BASE)
if (obj->pwm == PWM_21) __HAL_RCC_TIM21_CLK_ENABLE();
#endif
#if defined(TIM22_BASE)
if (obj->pwm == PWM_22) __HAL_RCC_TIM22_CLK_ENABLE();
#endif
// Configure GPIO
pinmap_pinout(pin, PinMap_PWM);
obj->pin = pin;
obj->period = 0;
obj->pulse = 0;
obj->prescaler = 1;
pwmout_period_us(obj, 20000); // 20 ms per default
}
void pwmout_free(pwmout_t* obj)
{
// Configure GPIO
pin_function(obj->pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
}
void pwmout_write(pwmout_t* obj, float value)
{
TIM_OC_InitTypeDef sConfig;
int channel = 0;
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
if (value < (float)0.0) {
value = 0.0;
} else if (value > (float)1.0) {
value = 1.0;
}
obj->pulse = (uint32_t)((float)obj->period * value);
// Configure channels
sConfig.OCMode = TIM_OCMODE_PWM1;
sConfig.Pulse = obj->pulse / obj->prescaler;
sConfig.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfig.OCFastMode = TIM_OCFAST_DISABLE;
#if defined(TIM_OCIDLESTATE_RESET)
sConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
#endif
#if defined(TIM_OCNIDLESTATE_RESET)
sConfig.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
#endif
switch (obj->channel) {
case 1:
channel = TIM_CHANNEL_1;
break;
case 2:
channel = TIM_CHANNEL_2;
break;
case 3:
channel = TIM_CHANNEL_3;
break;
case 4:
channel = TIM_CHANNEL_4;
break;
default:
return;
}
2015-08-17 09:48:21 +00:00
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) {
error("Cannot initialize PWM\n");
}
#if !defined(PWMOUT_INVERTED_NOT_SUPPORTED)
2015-08-17 09:48:21 +00:00
if (obj->inverted) {
HAL_TIMEx_PWMN_Start(&TimHandle, channel);
} else
#endif
{
HAL_TIM_PWM_Start(&TimHandle, channel);
}
}
float pwmout_read(pwmout_t* obj)
{
float value = 0;
if (obj->period > 0) {
value = (float)(obj->pulse) / (float)(obj->period);
}
return ((value > (float)1.0) ? (float)(1.0) : (value));
}
void pwmout_period(pwmout_t* obj, float seconds)
{
pwmout_period_us(obj, seconds * 1000000.0f);
}
void pwmout_period_ms(pwmout_t* obj, int ms)
{
pwmout_period_us(obj, ms * 1000);
}
void pwmout_period_us(pwmout_t* obj, int us)
{
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
RCC_ClkInitTypeDef RCC_ClkInitStruct;
uint32_t PclkFreq = 0;
uint32_t APBxCLKDivider = RCC_HCLK_DIV1;
float dc = pwmout_read(obj);
uint8_t i = 0;
__HAL_TIM_DISABLE(&TimHandle);
2015-08-17 09:48:21 +00:00
// Get clock configuration
// Note: PclkFreq contains here the Latency (not used after)
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);
/* Parse the pwm / apb mapping table to find the right entry */
while(pwm_apb_map_table[i].pwm != obj->pwm) {
i++;
}
if(pwm_apb_map_table[i].pwm == 0)
error("Unknown PWM instance");
if(pwm_apb_map_table[i].pwmoutApb == PWMOUT_ON_APB1) {
PclkFreq = HAL_RCC_GetPCLK1Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
} else {
#if !defined(PWMOUT_APB2_NOT_SUPPORTED)
PclkFreq = HAL_RCC_GetPCLK2Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
#endif
}
/* By default use, 1us as SW pre-scaler */
obj->prescaler = 1;
2015-08-17 09:48:21 +00:00
// TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
if (APBxCLKDivider == RCC_HCLK_DIV1)
TimHandle.Init.Prescaler = (((PclkFreq) / 1000000)) - 1; // 1 us tick
else
TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000)) - 1; // 1 us tick
TimHandle.Init.Period = (us - 1);
/* In case period or pre-scalers are out of range, loop-in to get valid values */
while ((TimHandle.Init.Period > 0xFFFF) || (TimHandle.Init.Prescaler > 0xFFFF)) {
obj->prescaler = obj->prescaler * 2;
if (APBxCLKDivider == RCC_HCLK_DIV1)
TimHandle.Init.Prescaler = (((PclkFreq) / 1000000) * obj->prescaler) - 1;
else
TimHandle.Init.Prescaler = (((PclkFreq * 2) / 1000000) * obj->prescaler) - 1;
TimHandle.Init.Period = (us - 1) / obj->prescaler;
/* Period decreases and prescaler increases over loops, so check for
* possible out of range cases */
if ((TimHandle.Init.Period < 0xFFFF) && (TimHandle.Init.Prescaler > 0xFFFF)) {
error("Cannot initialize PWM\n");
break;
}
}
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
2015-08-17 09:48:21 +00:00
if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
error("Cannot initialize PWM\n");
}
// Save for future use
obj->period = us;
// Set duty cycle again
pwmout_write(obj, dc);
__HAL_TIM_ENABLE(&TimHandle);
}
void pwmout_pulsewidth(pwmout_t* obj, float seconds)
{
pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}
void pwmout_pulsewidth_ms(pwmout_t* obj, int ms)
{
pwmout_pulsewidth_us(obj, ms * 1000);
}
void pwmout_pulsewidth_us(pwmout_t* obj, int us)
{
float value = (float)us / (float)obj->period;
pwmout_write(obj, value);
}
#endif