[STM32F4] pwmout improvements

pull/1300/head
bcostm 2015-08-17 11:48:21 +02:00
parent 7b1a2e1077
commit 3ce7c5c790
1 changed files with 47 additions and 77 deletions

View File

@ -42,33 +42,30 @@ void pwmout_init(pwmout_t* obj, PinName pin)
{
// Get the peripheral name from the pin and assign it to the object
obj->pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
MBED_ASSERT(obj->pwm != (PWMName)NC);
// Get the functions (timer channel, (non)inverted) from the pin and assign it to the object
uint32_t function = pinmap_function(pin, PinMap_PWM);
MBED_ASSERT(function != (uint32_t)NC);
obj->channel = STM_PIN_CHANNEL(function);
obj->channel = STM_PIN_CHANNEL(function);
obj->inverted = STM_PIN_INVERTED(function);
if (obj->pwm == (PWMName)NC) {
error("PWM error: pinout mapping failed.");
}
// Enable TIM clock
if (obj->pwm == PWM_1) __TIM1_CLK_ENABLE();
if (obj->pwm == PWM_2) __TIM2_CLK_ENABLE();
if (obj->pwm == PWM_3) __TIM3_CLK_ENABLE();
if (obj->pwm == PWM_4) __TIM4_CLK_ENABLE();
if (obj->pwm == PWM_1) __HAL_RCC_TIM1_CLK_ENABLE();
if (obj->pwm == PWM_2) __HAL_RCC_TIM2_CLK_ENABLE();
if (obj->pwm == PWM_3) __HAL_RCC_TIM3_CLK_ENABLE();
if (obj->pwm == PWM_4) __HAL_RCC_TIM4_CLK_ENABLE();
#if defined(TIM8_BASE)
if (obj->pwm == PWM_8) __TIM8_CLK_ENABLE();
if (obj->pwm == PWM_8) __HAL_RCC_TIM8_CLK_ENABLE();
#endif
if (obj->pwm == PWM_9) __TIM9_CLK_ENABLE();
if (obj->pwm == PWM_10) __TIM10_CLK_ENABLE();
if (obj->pwm == PWM_11) __TIM11_CLK_ENABLE();
if (obj->pwm == PWM_9) __HAL_RCC_TIM9_CLK_ENABLE();
if (obj->pwm == PWM_10) __HAL_RCC_TIM10_CLK_ENABLE();
if (obj->pwm == PWM_11) __HAL_RCC_TIM11_CLK_ENABLE();
#if defined(TIM13_BASE)
if (obj->pwm == PWM_13) __TIM13_CLK_ENABLE();
if (obj->pwm == PWM_13) __HAL_RCC_TIM13_CLK_ENABLE();
#endif
#if defined(TIM14_BASE)
if (obj->pwm == PWM_14) __TIM14_CLK_ENABLE();
if (obj->pwm == PWM_14) __HAL_RCC_TIM14_CLK_ENABLE();
#endif
// Configure GPIO
@ -91,7 +88,6 @@ void pwmout_write(pwmout_t* obj, float value)
{
TIM_OC_InitTypeDef sConfig;
int channel = 0;
int complementary_channel = 0;
TimHandle.Instance = (TIM_TypeDef *)(obj->pwm);
@ -112,31 +108,28 @@ void pwmout_write(pwmout_t* obj, float value)
sConfig.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfig.OCNIdleState = TIM_OCNIDLESTATE_RESET;
complementary_channel = obj->inverted;
switch (obj->channel) {
case 1:
channel = TIM_CHANNEL_1;
break;
case 2:
channel = TIM_CHANNEL_2;
break;
case 3:
channel = TIM_CHANNEL_3;
break;
case 4:
channel = TIM_CHANNEL_4;
break;
default:
return;
}
HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel);
if (complementary_channel) {
if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig, channel) != HAL_OK) {
error("Cannot initialize PWM\n");
}
if (obj->inverted) {
HAL_TIMEx_PWMN_Start(&TimHandle, channel);
} else {
HAL_TIM_PWM_Start(&TimHandle, channel);
@ -172,81 +165,58 @@ void pwmout_period_us(pwmout_t* obj, int us)
__HAL_TIM_DISABLE(&TimHandle);
// Update the SystemCoreClock variable
SystemCoreClockUpdate();
// Get clock configuration
// Note: PclkFreq contains here the Latency (not used after)
HAL_RCC_GetClockConfig(&RCC_ClkInitStruct, &PclkFreq);
// Get the PCLK and APBCLK divider related to the timer
switch (obj->pwm) {
case PWM_1:
PclkFreq = HAL_RCC_GetPCLK2Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
break;
// APB1 clock
case PWM_2:
PclkFreq = HAL_RCC_GetPCLK1Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
break;
case PWM_3:
PclkFreq = HAL_RCC_GetPCLK1Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
break;
case PWM_4:
PclkFreq = HAL_RCC_GetPCLK1Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
break;
#if defined(TIM8_BASE)
case PWM_8:
PclkFreq = HAL_RCC_GetPCLK2Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
break;
case PWM_5:
#if defined(TIM12_BASE)
case PWM_12:
#endif
case PWM_9:
PclkFreq = HAL_RCC_GetPCLK2Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
break;
case PWM_10:
PclkFreq = HAL_RCC_GetPCLK2Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
break;
case PWM_11:
PclkFreq = HAL_RCC_GetPCLK2Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
break;
#if defined(TIM13_BASE)
#if defined(TIM13_BASE)
case PWM_13:
PclkFreq = HAL_RCC_GetPCLK1Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
break;
#endif
#if defined(TIM14_BASE)
case PWM_14:
PclkFreq = HAL_RCC_GetPCLK1Freq();
#endif
PclkFreq = HAL_RCC_GetPCLK1Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB1CLKDivider;
break;
// APB2 clock
case PWM_1:
#if defined(TIM8_BASE)
case PWM_8:
#endif
case PWM_9:
case PWM_10:
case PWM_11:
PclkFreq = HAL_RCC_GetPCLK2Freq();
APBxCLKDivider = RCC_ClkInitStruct.APB2CLKDivider;
break;
default:
return;
}
TimHandle.Init.Period = us - 1;
// TIMxCLK = PCLKx when the APB prescaler = 1 else TIMxCLK = 2 * PCLKx
if (APBxCLKDivider == RCC_HCLK_DIV1)
TimHandle.Init.Prescaler = (uint16_t)((PclkFreq) / 1000000) - 1; // 1 µs tick
TimHandle.Init.Prescaler = (uint16_t)((PclkFreq) / 1000000) - 1; // 1 us tick
else
TimHandle.Init.Prescaler = (uint16_t)((PclkFreq)*2 / 1000000) - 1; // 1 µs tick
TimHandle.Init.Prescaler = (uint16_t)((PclkFreq * 2) / 1000000) - 1; // 1 us tick
TimHandle.Init.ClockDivision = 0;
TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_PWM_Init(&TimHandle);
if (HAL_TIM_PWM_Init(&TimHandle) != HAL_OK) {
error("Cannot initialize PWM\n");
}
// Set duty cycle again
pwmout_write(obj, dc);