diff --git a/README.md b/README.md
index 4ea12b7..a256396 100644
--- a/README.md
+++ b/README.md
@@ -1,6 +1,5 @@
-> Notice: Bark is Suno's open-source text-to-speech+ model. If you are looking for our text-to-music models, please visit us on our [web page](https://suno.ai) and join our community on [Discord](https://suno.ai/discord).
+> Notice: Bark is Suno's open-source text-to-speech+ model. If you are looking for our text-to-music models, please visit us on our [web page](https://suno.ai) and join our community on [Discord](https://suno.ai/discord).
-
# ๐ถ Bark
[](https://suno.ai/discord)
@@ -8,7 +7,8 @@
> ๐ [Examples](https://suno.ai/examples/bark-v0) โข [Suno Studio Waitlist](https://suno-ai.typeform.com/suno-studio) โข [Updates](#-updates) โข [How to Use](#-usage-in-python) โข [Installation](#-installation) โข [FAQ](#-faq)
-[//]: (vertical spaces around image)
+[//]: br "vertical spaces around image"
+
@@ -18,16 +18,18 @@
Bark is a transformer-based text-to-audio model created by [Suno](https://suno.ai). Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. The model can also produce nonverbal communications like laughing, sighing and crying. To support the research community, we are providing access to pretrained model checkpoints, which are ready for inference and available for commercial use.
## โ Disclaimer
+
Bark was developed for research purposes. It is not a conventional text-to-speech model but instead a fully generative text-to-audio model, which can deviate in unexpected ways from provided prompts. Suno does not take responsibility for any output generated. Use at your own risk, and please act responsibly.
## ๐ Quick Index
-* [๐ Updates](#-updates)
-* [๐ป Installation](#-installation)
-* [๐ Usage](#-usage-in-python)
-* [๐ Live Examples](https://suno.ai/examples/bark-v0)
-* [โ FAQ](#-faq)
-## ๐ง Demos
+- [๐ Updates](#-updates)
+- [๐ป Installation](#-installation)
+- [๐ Usage](#-usage-in-python)
+- [๐ Live Examples](https://suno.ai/examples/bark-v0)
+- [โ FAQ](#-faq)
+
+## ๐ง Demos
[](https://huggingface.co/spaces/suno/bark)
[](https://replicate.com/suno-ai/bark)
@@ -36,17 +38,19 @@ Bark was developed for research purposes. It is not a conventional text-to-speec
## ๐ Updates
**2023.05.01**
-- ยฉ๏ธ Bark is now licensed under the MIT License, meaning it's now available for commercial use!
-- โก 2x speed-up on GPU. 10x speed-up on CPU. We also added an option for a smaller version of Bark, which offers additional speed-up with the trade-off of slightly lower quality.
-- ๐ [Long-form generation](notebooks/long_form_generation.ipynb), voice consistency enhancements and other examples are now documented in a new [notebooks](./notebooks) section.
-- ๐ฅ We created a [voice prompt library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c). We hope this resource helps you find useful prompts for your use cases! You can also join us on [Discord](https://suno.ai/discord), where the community actively shares useful prompts in the **#audio-prompts** channel.
-- ๐ฌ Growing community support and access to new features here:
- [](https://suno.ai/discord)
+- ยฉ๏ธ Bark is now licensed under the MIT License, meaning it's now available for commercial use!
+- โก 2x speed-up on GPU. 10x speed-up on CPU. We also added an option for a smaller version of Bark, which offers additional speed-up with the trade-off of slightly lower quality.
+- ๐ [Long-form generation](notebooks/long_form_generation.ipynb), voice consistency enhancements and other examples are now documented in a new [notebooks](./notebooks) section.
+- ๐ฅ We created a [voice prompt library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c). We hope this resource helps you find useful prompts for your use cases! You can also join us on [Discord](https://suno.ai/discord), where the community actively shares useful prompts in the **#audio-prompts** channel.
+- ๐ฌ Growing community support and access to new features here:
+
+ [](https://suno.ai/discord)
- ๐พ You can now use Bark with GPUs that have low VRAM (<4GB).
**2023.04.20**
+
- ๐ถ Bark release!
## ๐ Usage in Python
@@ -64,18 +68,18 @@ preload_models()
# generate audio from text
text_prompt = """
- Hello, my name is Suno. And, uh โ and I like pizza. [laughs]
+ Hello, my name is Suno. And, uh โ and I like pizza. [laughs]
But I also have other interests such as playing tic tac toe.
"""
audio_array = generate_audio(text_prompt)
# save audio to disk
write_wav("bark_generation.wav", SAMPLE_RATE, audio_array)
-
+
# play text in notebook
Audio(audio_array, rate=SAMPLE_RATE)
```
-
+
[pizza1.webm](https://user-images.githubusercontent.com/34592747/cfa98e54-721c-4b9c-b962-688e09db684f.webm)
@@ -94,9 +98,11 @@ text_prompt = """
"""
audio_array = generate_audio(text_prompt)
```
+
[suno_korean.webm](https://user-images.githubusercontent.com/32879321/235313033-dc4477b9-2da0-4b94-9c8b-a8c2d8f5bb5e.webm)
-
-*Note: since Bark recognizes languages automatically from input text, it is possible to use, for example, a german history prompt with english text. This usually leads to english audio with a german accent.*
+
+_Note: since Bark recognizes languages automatically from input text, it is possible to use, for example, a german history prompt with english text. This usually leads to english audio with a german accent._
+
```python
text_prompt = """
Der Dreiรigjรคhrige Krieg (1618-1648) war ein verheerender Konflikt, der Europa stark geprรคgt hat.
@@ -104,11 +110,9 @@ text_prompt = """
"""
audio_array = generate_audio(text_prompt)
```
+
[suno_german_accent.webm](https://user-images.githubusercontent.com/34592747/3f96ab3e-02ec-49cb-97a6-cf5af0b3524a.webm)
-
-
-
@@ -123,7 +127,9 @@ text_prompt = """
"""
audio_array = generate_audio(text_prompt)
```
+
[lion.webm](https://user-images.githubusercontent.com/5068315/230684766-97f5ea23-ad99-473c-924b-66b6fab24289.webm)
+
@@ -135,17 +141,78 @@ Bark supports 100+ speaker presets across [supported languages](#supported-langu
```python
text_prompt = """
- I have a silky smooth voice, and today I will tell you about
+ I have a silky smooth voice, and today I will tell you about
the exercise regimen of the common sloth.
"""
audio_array = generate_audio(text_prompt, history_prompt="v2/en_speaker_1")
```
[sloth.webm](https://user-images.githubusercontent.com/5068315/230684883-a344c619-a560-4ff5-8b99-b4463a34487b.webm)
+
+### ๐ผ Generating Audio from SRT Files
+
+The `srt_to_audio` function allows you to convert SRT subtitle files into audio using Bark. This is useful for dubbing videos or generating narrated content.
+
+```python
+from bark import srt_to_audio
+
+# Path to your SRT file
+
+# Generate audio from SRT
+audio_array = srt_to_audio(
+ srt_file_path="path/to/subtitles.srt", # Path to your SRT file
+ output_dir="path/to/output" # Output directory
+)
+```
+
+
+ DEMO SRT: looks something like this
+
+```srt
+1
+00:00:01,599 --> 00:00:06,600
+Hello and welcome to CubicIn and this
+
+2
+00:00:06,600 --> 00:00:10,599
+platform helps students and teachers in
+
+3
+00:00:10,599 --> 00:00:12,440
+making quizzes.
+
+4
+00:00:12,440 --> 00:00:16,800
+This quiz is AI based, so it is
+
+5
+00:00:16,800 --> 00:00:20,199
+unique every time and it
+
+6
+00:00:20,199 --> 00:00:24,240
+basically makes quizzes by following the structure of the syllabus and government and or
+```
+
+
+
+## `output`:
+
+[srt_to_audio.webm](https://private-user-images.githubusercontent.com/56386987/415886704-c362c5d2-44df-4a90-af85-245cf8acf48f.webm?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3NDAyMDg1ODksIm5iZiI6MTc0MDIwODI4OSwicGF0aCI6Ii81NjM4Njk4Ny80MTU4ODY3MDQtYzM2MmM1ZDItNDRkZi00YTkwLWFmODUtMjQ1Y2Y4YWNmNDhmLndlYm0_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjIyJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIyMlQwNzExMjlaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1lYWExMTIxNDBjODEyNWUwZDRkYzBiZTJlN2VkY2M0YjllYTE1ZmMzYjcyMzFiNjMwMjZlZWJlM2EzZGNhN2Q5JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.stUjq3t3qMMTPc77p1txGQmgFBVXSiLxVxM-3aGsvG0)
+
+## Parameters:
+
+- **`srt_path`** (_str_): Path to the input `.srt` file.
+- **`output_dir`** (_str_): Path to the output directory to store `.wav` file.
+- **`history_prompt`** (_str_, _optional_): Voice prompt for Bark generation.
+- **`chunk_size`** (_int_, _optional_): Number of subtitles per audio chunk. or after how many dialogues the audio should be saved.
+
+This will generate an audio file that narrates the subtitles from your `.srt` file in the chosen voice preset.
+
### ๐ Generating Longer Audio
-
+
By default, `generate_audio` works well with around 13 seconds of spoken text. For an example of how to do long-form generation, see ๐ **[Notebook](notebooks/long_form_generation.ipynb)** ๐
@@ -159,14 +226,16 @@ By default, `generate_audio` works well with around 13 seconds of spoken text. F
-
## Command line
+
```commandline
python -m bark --text "Hello, my name is Suno." --output_filename "example.wav"
```
## ๐ป Installation
-*โผ๏ธ CAUTION โผ๏ธ Do NOT use `pip install bark`. It installs a different package, which is not managed by Suno.*
+
+_โผ๏ธ CAUTION โผ๏ธ Do NOT use `pip install bark`. It installs a different package, which is not managed by Suno._
+
```bash
pip install git+https://github.com/suno-ai/bark.git
```
@@ -175,13 +244,12 @@ or
```bash
git clone https://github.com/suno-ai/bark
-cd bark && pip install .
+cd bark && pip install .
```
-
## ๐ค Transformers Usage
-Bark is available in the ๐ค Transformers library from version 4.31.0 onwards, requiring minimal dependencies
+Bark is available in the ๐ค Transformers library from version 4.31.0 onwards, requiring minimal dependencies
and additional packages. Steps to get started:
1. First install the ๐ค [Transformers library](https://github.com/huggingface/transformers) from main:
@@ -224,18 +292,17 @@ sample_rate = model.generation_config.sample_rate
scipy.io.wavfile.write("bark_out.wav", rate=sample_rate, data=audio_array)
```
-For more details on using the Bark model for inference using the ๐ค Transformers library, refer to the
-[Bark docs](https://huggingface.co/docs/transformers/main/en/model_doc/bark) or the hands-on
+For more details on using the Bark model for inference using the ๐ค Transformers library, refer to the
+[Bark docs](https://huggingface.co/docs/transformers/main/en/model_doc/bark) or the hands-on
[Google Colab](https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing).
-
## ๐ ๏ธ Hardware and Inference Speed
Bark has been tested and works on both CPU and GPU (`pytorch 2.0+`, CUDA 11.7 and CUDA 12.0).
On enterprise GPUs and PyTorch nightly, Bark can generate audio in roughly real-time. On older GPUs, default colab, or CPU, inference time might be significantly slower. For older GPUs or CPU you might want to consider using smaller models. Details can be found in out tutorial sections here.
-The full version of Bark requires around 12GB of VRAM to hold everything on GPU at the same time.
+The full version of Bark requires around 12GB of VRAM to hold everything on GPU at the same time.
To use a smaller version of the models, which should fit into 8GB VRAM, set the environment flag `SUNO_USE_SMALL_MODELS=True`.
If you don't have hardware available or if you want to play with bigger versions of our models, you can also sign up for early access to our model playground [here](https://suno-ai.typeform.com/suno-studio).
@@ -259,23 +326,23 @@ Below is a list of some known non-speech sounds, but we are finding more every d
### Supported Languages
-| Language | Status |
-| --- | :---: |
-| English (en) | โ
|
-| German (de) | โ
|
-| Spanish (es) | โ
|
-| French (fr) | โ
|
-| Hindi (hi) | โ
|
-| Italian (it) | โ
|
-| Japanese (ja) | โ
|
-| Korean (ko) | โ
|
-| Polish (pl) | โ
|
-| Portuguese (pt) | โ
|
-| Russian (ru) | โ
|
-| Turkish (tr) | โ
|
-| Chinese, simplified (zh) | โ
|
+| Language | Status |
+| ------------------------ | :----: |
+| English (en) | โ
|
+| German (de) | โ
|
+| Spanish (es) | โ
|
+| French (fr) | โ
|
+| Hindi (hi) | โ
|
+| Italian (it) | โ
|
+| Japanese (ja) | โ
|
+| Korean (ko) | โ
|
+| Polish (pl) | โ
|
+| Portuguese (pt) | โ
|
+| Russian (ru) | โ
|
+| Turkish (tr) | โ
|
+| Chinese, simplified (zh) | โ
|
-Requests for future language support [here](https://github.com/suno-ai/bark/discussions/111) or in the **#forums** channel on [Discord](https://suno.ai/discord).
+Requests for future language support [here](https://github.com/suno-ai/bark/discussions/111) or in the **#forums** channel on [Discord](https://suno.ai/discord).
## ๐ Appreciation
@@ -286,7 +353,7 @@ Requests for future language support [here](https://github.com/suno-ai/bark/disc
## ยฉ License
-Bark is licensed under the MIT License.
+Bark is licensed under the MIT License.
## ๐ฑย Community
@@ -295,27 +362,31 @@ Bark is licensed under the MIT License.
## ๐งย Suno Studio (Early Access)
-Weโre developing a playground for our models, including Bark.
+Weโre developing a playground for our models, including Bark.
If you are interested, you can sign up for early access [here](https://suno-ai.typeform.com/suno-studio).
## โ FAQ
#### How do I specify where models are downloaded and cached?
-* Bark uses Hugging Face to download and store models. You can see find more info [here](https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhome).
+- Bark uses Hugging Face to download and store models. You can see find more info [here](https://huggingface.co/docs/huggingface_hub/package_reference/environment_variables#hfhome).
#### Bark's generations sometimes differ from my prompts. What's happening?
-* Bark is a GPT-style model. As such, it may take some creative liberties in its generations, resulting in higher-variance model outputs than traditional text-to-speech approaches.
-#### What voices are supported by Bark?
-* Bark supports 100+ speaker presets across [supported languages](#supported-languages). You can browse the library of speaker presets [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c). The community also shares presets in [Discord](https://suno.ai/discord). Bark also supports generating unique random voices that fit the input text. Bark does not currently support custom voice cloning.
+- Bark is a GPT-style model. As such, it may take some creative liberties in its generations, resulting in higher-variance model outputs than traditional text-to-speech approaches.
+
+#### What voices are supported by Bark?
+
+- Bark supports 100+ speaker presets across [supported languages](#supported-languages). You can browse the library of speaker presets [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c). The community also shares presets in [Discord](https://suno.ai/discord). Bark also supports generating unique random voices that fit the input text. Bark does not currently support custom voice cloning.
#### Why is the output limited to ~13-14 seconds?
-* Bark is a GPT-style model, and its architecture/context window is optimized to output generations with roughly this length.
+
+- Bark is a GPT-style model, and its architecture/context window is optimized to output generations with roughly this length.
#### How much VRAM do I need?
-* The full version of Bark requires around 12Gb of memory to hold everything on GPU at the same time. However, even smaller cards down to ~2Gb work with some additional settings. Simply add the following code snippet before your generation:
+
+- The full version of Bark requires around 12Gb of memory to hold everything on GPU at the same time. However, even smaller cards down to ~2Gb work with some additional settings. Simply add the following code snippet before your generation:
```python
import os
@@ -324,4 +395,5 @@ os.environ["SUNO_USE_SMALL_MODELS"] = "True"
```
#### My generated audio sounds like a 1980s phone call. What's happening?
-* Bark generates audio from scratch. It is not meant to create only high-fidelity, studio-quality speech. Rather, outputs could be anything from perfect speech to multiple people arguing at a baseball game recorded with bad microphones.
+
+- Bark generates audio from scratch. It is not meant to create only high-fidelity, studio-quality speech. Rather, outputs could be anything from perfect speech to multiple people arguing at a baseball game recorded with bad microphones.
diff --git a/bark/__init__.py b/bark/__init__.py
index e0b17c8..4123dc4 100644
--- a/bark/__init__.py
+++ b/bark/__init__.py
@@ -1,2 +1,3 @@
from .api import generate_audio, text_to_semantic, semantic_to_waveform, save_as_prompt
from .generation import SAMPLE_RATE, preload_models
+from .srt_gen import srt_to_audio
\ No newline at end of file
diff --git a/bark/srt_gen.py b/bark/srt_gen.py
new file mode 100644
index 0000000..f275623
--- /dev/null
+++ b/bark/srt_gen.py
@@ -0,0 +1,114 @@
+import os
+import io
+from pydub import AudioSegment
+from scipy.io.wavfile import write as write_wav
+from .api import generate_audio
+from .generation import SAMPLE_RATE, preload_models
+from tqdm import tqdm
+# Preload Bark models once
+preload_models()
+
+
+def numpy_array_to_audiosegment(np_array, sample_rate):
+ """Convert numpy audio array to pydub AudioSegment."""
+ audio_buffer = io.BytesIO()
+ write_wav(audio_buffer, sample_rate, (np_array * 32767).astype("int16"))
+ audio_buffer.seek(0)
+ return AudioSegment.from_file(audio_buffer, format="wav")
+
+
+def parse_srt(srt_file_path):
+ """Parse SRT file and extract subtitle entries."""
+ subtitle_entries = []
+ with open(srt_file_path, 'r', encoding='utf-8') as file:
+ content = file.read()
+
+ subtitle_blocks = content.strip().split("\n\n")
+
+ for block in subtitle_blocks:
+ lines = block.strip().split("\n")
+ if len(lines) < 3:
+ continue
+
+ idx = lines[0].strip()
+ time_range = lines[1].strip()
+ text = " ".join(lines[2:]).strip()
+
+ if " --> " not in time_range:
+ continue
+
+ start_time, end_time = time_range.split(" --> ")
+ subtitle_entries.append({
+ "idx": idx,
+ "start_time": time_to_seconds(start_time),
+ "end_time": time_to_seconds(end_time),
+ "text": text
+ })
+
+ return subtitle_entries
+
+
+def time_to_seconds(time_str):
+ """Convert timestamp (HH:MM:SS,MS) to total seconds."""
+ hours, minutes, seconds = time_str.split(":")
+ seconds, milliseconds = seconds.split(",")
+ return int(hours) * 3600 + int(minutes) * 60 + int(seconds) + int(milliseconds) / 1000
+
+
+def generate_silence(duration_ms, frame_rate=SAMPLE_RATE):
+ """Generate silence of given duration in milliseconds."""
+ return AudioSegment.silent(duration=duration_ms, frame_rate=frame_rate)
+
+
+def srt_to_audio(srt_file_path: str, output_dir: str, history_prompt: str = "v2/en_speaker_6", chunk_size: int = 100):
+ """
+ Convert SRT subtitles to audio using Bark.
+
+ Args:
+ srt_file_path (str): Path to the input SRT file.
+ output_dir (str): Directory to save output audio files.
+ history_prompt (str): Voice prompt for Bark generation.
+ chunk_size (int): Number of subtitles per audio chunk. or after how many dialogues the audio should be saved.
+ """
+ if not os.path.exists(srt_file_path):
+ raise FileNotFoundError(f"SRT file not found: {srt_file_path}")
+
+ os.makedirs(output_dir, exist_ok=True)
+ subtitles = parse_srt(srt_file_path)
+
+ final_audio = AudioSegment.empty()
+ previous_end_time = 0
+ part_number = 1
+
+ for idx, entry in enumerate(tqdm(subtitles, desc="Generating Audio")):
+ text = entry["text"]
+ start_time = entry["start_time"]
+ end_time = entry["end_time"]
+
+ # Add silence for gaps
+ silence_duration = max(0, (start_time - previous_end_time) * 1000)
+ final_audio += generate_silence(silence_duration)
+
+ # Generate audio for subtitle
+ if text.strip():
+ audio_np = generate_audio(text, history_prompt=history_prompt)
+ subtitle_audio = numpy_array_to_audiosegment(audio_np, SAMPLE_RATE)
+ final_audio += subtitle_audio
+
+ previous_end_time = end_time
+
+ # Save chunk
+ if (idx + 1) % chunk_size == 0:
+ output_path = os.path.join(output_dir, f"output_part_{part_number}.wav")
+ final_audio.export(output_path, format="wav")
+ print(f"โ
Saved: {output_path}")
+ final_audio = AudioSegment.empty()
+ part_number += 1
+
+ # Save remaining audio
+ if len(final_audio) > 0:
+ output_path = os.path.join(output_dir, f"output_part_{part_number}.wav")
+ final_audio.export(output_path, format="wav")
+ print(f"โ
Saved final part: {output_path}")
+
+ print("๐ Audio generation complete!")
diff --git a/notebooks/bark_demo_srt_audio.ipynb b/notebooks/bark_demo_srt_audio.ipynb
new file mode 100644
index 0000000..a2c5447
--- /dev/null
+++ b/notebooks/bark_demo_srt_audio.ipynb
@@ -0,0 +1,3248 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "-4jTuaSA1By6",
+ "outputId": "8e417d1e-e69c-46a7-e0b1-a6895b04f64f"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting git+https://github.com/jayeshthk/bark.git\n",
+ " Cloning https://github.com/jayeshthk/bark.git to /tmp/pip-req-build-uffja7tb\n",
+ " Running command git clone --filter=blob:none --quiet https://github.com/jayeshthk/bark.git /tmp/pip-req-build-uffja7tb\n",
+ " Resolved https://github.com/jayeshthk/bark.git to commit 95977fb20b24ff29f479f9055ad52b0e56e9c634\n",
+ " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
+ " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
+ " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
+ "Collecting boto3 (from suno-bark==0.0.1a0)\n",
+ " Downloading boto3-1.36.26-py3-none-any.whl.metadata (6.7 kB)\n",
+ "Collecting encodec (from suno-bark==0.0.1a0)\n",
+ " Downloading encodec-0.1.1.tar.gz (3.7 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m3.7/3.7 MB\u001b[0m \u001b[31m71.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ "Collecting funcy (from suno-bark==0.0.1a0)\n",
+ " Downloading funcy-2.0-py2.py3-none-any.whl.metadata (5.9 kB)\n",
+ "Requirement already satisfied: huggingface-hub>=0.14.1 in /usr/local/lib/python3.11/dist-packages (from suno-bark==0.0.1a0) (0.28.1)\n",
+ "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from suno-bark==0.0.1a0) (1.26.4)\n",
+ "Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from suno-bark==0.0.1a0) (1.13.1)\n",
+ "Requirement already satisfied: tokenizers in /usr/local/lib/python3.11/dist-packages (from suno-bark==0.0.1a0) (0.21.0)\n",
+ "Requirement already satisfied: torch in /usr/local/lib/python3.11/dist-packages (from suno-bark==0.0.1a0) (2.5.1+cu124)\n",
+ "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from suno-bark==0.0.1a0) (4.67.1)\n",
+ "Requirement already satisfied: transformers in /usr/local/lib/python3.11/dist-packages (from suno-bark==0.0.1a0) (4.48.3)\n",
+ "Collecting pydub (from suno-bark==0.0.1a0)\n",
+ " Downloading pydub-0.25.1-py2.py3-none-any.whl.metadata (1.4 kB)\n",
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (3.17.0)\n",
+ "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (2024.10.0)\n",
+ "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (24.2)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (6.0.2)\n",
+ "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (2.32.3)\n",
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (4.12.2)\n",
+ "Collecting botocore<1.37.0,>=1.36.26 (from boto3->suno-bark==0.0.1a0)\n",
+ " Downloading botocore-1.36.26-py3-none-any.whl.metadata (5.7 kB)\n",
+ "Collecting jmespath<2.0.0,>=0.7.1 (from boto3->suno-bark==0.0.1a0)\n",
+ " Downloading jmespath-1.0.1-py3-none-any.whl.metadata (7.6 kB)\n",
+ "Collecting s3transfer<0.12.0,>=0.11.0 (from boto3->suno-bark==0.0.1a0)\n",
+ " Downloading s3transfer-0.11.2-py3-none-any.whl.metadata (1.7 kB)\n",
+ "Requirement already satisfied: torchaudio in /usr/local/lib/python3.11/dist-packages (from encodec->suno-bark==0.0.1a0) (2.5.1+cu124)\n",
+ "Requirement already satisfied: einops in /usr/local/lib/python3.11/dist-packages (from encodec->suno-bark==0.0.1a0) (0.8.1)\n",
+ "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch->suno-bark==0.0.1a0) (3.4.2)\n",
+ "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch->suno-bark==0.0.1a0) (3.1.5)\n",
+ "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-curand-cu12==10.3.5.147 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n",
+ "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch->suno-bark==0.0.1a0) (2.21.5)\n",
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch->suno-bark==0.0.1a0) (12.4.127)\n",
+ "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch->suno-bark==0.0.1a0)\n",
+ " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "Requirement already satisfied: triton==3.1.0 in /usr/local/lib/python3.11/dist-packages (from torch->suno-bark==0.0.1a0) (3.1.0)\n",
+ "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch->suno-bark==0.0.1a0) (1.13.1)\n",
+ "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch->suno-bark==0.0.1a0) (1.3.0)\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers->suno-bark==0.0.1a0) (2024.11.6)\n",
+ "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.11/dist-packages (from transformers->suno-bark==0.0.1a0) (0.5.2)\n",
+ "Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /usr/local/lib/python3.11/dist-packages (from botocore<1.37.0,>=1.36.26->boto3->suno-bark==0.0.1a0) (2.8.2)\n",
+ "Requirement already satisfied: urllib3!=2.2.0,<3,>=1.25.4 in /usr/local/lib/python3.11/dist-packages (from botocore<1.37.0,>=1.36.26->boto3->suno-bark==0.0.1a0) (2.3.0)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch->suno-bark==0.0.1a0) (3.0.2)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (3.4.1)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (3.10)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->huggingface-hub>=0.14.1->suno-bark==0.0.1a0) (2025.1.31)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.37.0,>=1.36.26->boto3->suno-bark==0.0.1a0) (1.17.0)\n",
+ "Downloading boto3-1.36.26-py3-none-any.whl (139 kB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m139.2/139.2 kB\u001b[0m \u001b[31m15.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading funcy-2.0-py2.py3-none-any.whl (30 kB)\n",
+ "Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
+ "Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m93.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m71.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m59.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m75.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading botocore-1.36.26-py3-none-any.whl (13.4 MB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m13.4/13.4 MB\u001b[0m \u001b[31m93.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hDownloading jmespath-1.0.1-py3-none-any.whl (20 kB)\n",
+ "Downloading s3transfer-0.11.2-py3-none-any.whl (84 kB)\n",
+ "\u001b[2K \u001b[90mโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ\u001b[0m \u001b[32m84.2/84.2 kB\u001b[0m \u001b[31m9.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25hBuilding wheels for collected packages: suno-bark, encodec\n",
+ " Building wheel for suno-bark (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for suno-bark: filename=suno_bark-0.0.1a0-py3-none-any.whl size=2570221 sha256=a609f0f025a1461680ff6f5ad821249d2d3b91e878513a22edaca42c22f9d6e7\n",
+ " Stored in directory: /tmp/pip-ephem-wheel-cache-ocj3rc1z/wheels/be/d2/32/ee577c0c847a8c5518f4e777b6ec3cf24e6c2f9c08182dc4a5\n",
+ " Building wheel for encodec (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for encodec: filename=encodec-0.1.1-py3-none-any.whl size=45760 sha256=8b63bd5dfde891ff36f55aaa5720b70b15704dde8ee20f47416620d5cf7d1c00\n",
+ " Stored in directory: /root/.cache/pip/wheels/b4/a4/88/480018a664e58ca7ce6708759193ee51b017b3b72aa3df8a85\n",
+ "Successfully built suno-bark encodec\n",
+ "Installing collected packages: pydub, funcy, nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, jmespath, nvidia-cusparse-cu12, nvidia-cudnn-cu12, botocore, s3transfer, nvidia-cusolver-cu12, boto3, encodec, suno-bark\n",
+ " Attempting uninstall: nvidia-nvjitlink-cu12\n",
+ " Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n",
+ " Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n",
+ " Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n",
+ " Attempting uninstall: nvidia-curand-cu12\n",
+ " Found existing installation: nvidia-curand-cu12 10.3.6.82\n",
+ " Uninstalling nvidia-curand-cu12-10.3.6.82:\n",
+ " Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n",
+ " Attempting uninstall: nvidia-cufft-cu12\n",
+ " Found existing installation: nvidia-cufft-cu12 11.2.3.61\n",
+ " Uninstalling nvidia-cufft-cu12-11.2.3.61:\n",
+ " Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n",
+ " Attempting uninstall: nvidia-cuda-runtime-cu12\n",
+ " Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n",
+ " Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n",
+ " Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n",
+ " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n",
+ " Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n",
+ " Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n",
+ " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n",
+ " Attempting uninstall: nvidia-cuda-cupti-cu12\n",
+ " Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n",
+ " Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n",
+ " Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n",
+ " Attempting uninstall: nvidia-cublas-cu12\n",
+ " Found existing installation: nvidia-cublas-cu12 12.5.3.2\n",
+ " Uninstalling nvidia-cublas-cu12-12.5.3.2:\n",
+ " Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n",
+ " Attempting uninstall: nvidia-cusparse-cu12\n",
+ " Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n",
+ " Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n",
+ " Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n",
+ " Attempting uninstall: nvidia-cudnn-cu12\n",
+ " Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n",
+ " Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n",
+ " Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n",
+ " Attempting uninstall: nvidia-cusolver-cu12\n",
+ " Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n",
+ " Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n",
+ " Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n",
+ "Successfully installed boto3-1.36.26 botocore-1.36.26 encodec-0.1.1 funcy-2.0 jmespath-1.0.1 nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 pydub-0.25.1 s3transfer-0.11.2 suno-bark-0.0.1a0\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install git+https://github.com/jayeshthk/bark.git"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000,
+ "referenced_widgets": [
+ "7dd5a75f180a48c68731494e10f5ed41",
+ "f9fab93c9a1a4c22a6e1afa777cc423a",
+ "91b165944dbe4f81825a4d839c592ad7",
+ "a65c7cf3dfe045a5b0af44425ad65e94",
+ "d77ce3389f20460aae48b1d3fcd0d211",
+ "2a60a936dfc64d7d9abcc5656b234f89",
+ "e4ff0e6e07f5460494749dd0529c1eb8",
+ "f716da801acf497598762e2ec50d7a77",
+ "26fb34c8844945dca3b290309469b8b7",
+ "2e1fb2c5c5584f58a98a81b1c46579c7",
+ "28b18a24df954510bfaad04f25c1577f",
+ "ce67143299434d45a893b832a1e99c80",
+ "19e4d61763334041b28166b1d2877343",
+ "fc042880a22641a099b1bb39150b6667",
+ "52b372a2743c4a8388f1b906d84e5e3f",
+ "5fe880ba5a254b209f713622b87ad5f0",
+ "d043de3c64af4704a7bae5e0f88ce7cc",
+ "bd96f8c1e3554d0e91c890d5ba7578c0",
+ "6f27c5d11b5c43e3940c900dc1ebd3ba",
+ "52fe963dcc4745839afee7684bdadc6b",
+ "b2e6d8eb41d547bfa05572242bf4ee85",
+ "4201af9d8a67432d81c1ec36d985a0c9",
+ "cf3408e339a64792952a07c1948b4fdc",
+ "6a6cc92dfb4449d9af962267b63aa35c",
+ "c810176b3fac49aaa766fb3beb6f7c9c",
+ "df0b174ea7044a06970f4e3b008c23a0",
+ "bc81b1263abd402fbd60914631be6765",
+ "3fb182d8656c47d78b4fb93377dc208b",
+ "4fef8b1235f04ceb8e71a049c896f321",
+ "2382c8251c4c417d8e76ca79496aa1f0",
+ "724f93dfda034b1db056fb0d109f652b",
+ "070b495a389d4072bf6d4977e656cb0f",
+ "bd74d76ba6514db59a8187578eed3f7b",
+ "248acbc74d254b4b9d095efc02309e58",
+ "00801fcc96624851b4a87a19c11c0575",
+ "d95e095d7d124d669a6f9a52a0dc4d8b",
+ "81b5b4d0f17f4134af474d7beb938cb1",
+ "e4b6767fd1494804813633c963ff1c40",
+ "941661c381514d5d9aa03f293e85869c",
+ "310a2598500d4ddcbf5c04bdb8a1d23e",
+ "48beb862bc314f759e41c7695d695c5f",
+ "7cafb08baea44e2091d03749bf2c090e",
+ "dc63436fe5d74d2e8d6035f8203ba983",
+ "a801f43c199c4817847839a52164237a",
+ "62a094b2f0af4fe3a461b0d8bdb2b557",
+ "530f57064838444c955e7e227296c519",
+ "d946bdc0c9ca4bf59e8989c0cf6d80b4",
+ "bc21e3bd08bf4a05bc3d4247586f197b",
+ "36d98bf10431442c8b48d715c2cf8b7e",
+ "d115c3dac27445cf8478e0aabc8bec07",
+ "24f9937d1baf4f3f8a884853025733ce",
+ "32d83b03d1794cf8b8208615b5ffbe8a",
+ "dbef85ee69614ce9b7051fc7fafae0b1",
+ "fd6c97919ed94ef7ad43ce97f9d2fa36",
+ "0269ffcd98d74348af38eb61eb016547",
+ "47bcf8f33ccc42a4b5a423604250dda2",
+ "00cc1e3427b24e07a914ca216654c848",
+ "85969305aafa4bb7a24b403309d39767",
+ "66109b56a646486f89ecbc0f7d2adafd",
+ "a9bd87d2586b45499d464d2682416d0e",
+ "6fee8b6f73674d82ab8401e7dda4a2ea",
+ "c0671d8a122b49c9a7b4004c15685fb9",
+ "300e6316a4d44a919a175ac07a701fe1",
+ "b9981acfff5c47cb9e110057931b841e",
+ "00ec1679d1304d58897d36a81517af7f",
+ "15fbd21c5c4c44bc90552c5e8a0e4446",
+ "31c9c918e0a94c0a8e0af5bd722dba68",
+ "6fb3122db6e34c5eaa83e5c085bf68db",
+ "ea3c07e86a59491aadd8be47becfbef5",
+ "97eeb883d6cb4fc3a4329504cac8d3b2",
+ "36e7765ba89f4a0f8e185f8f991511e8",
+ "9bc5830268d4407795e3d53b3849011f",
+ "c02b531f633c4bd68af5281f13be0c76",
+ "542e61e25d6647699db75f4c93324408",
+ "c5ef1a138b6c42eb8ccb98ce59526c0c",
+ "f162f2375f0149fc8e4c07a9cd855aa0",
+ "283b67bf6ebc4dd0b770e315b970c1d3"
+ ]
+ },
+ "id": "2_pi0y6D1SaH",
+ "outputId": "631f417a-6bdb-4819-fcf0-dc67665f56bf"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n",
+ "The secret `HF_TOKEN` does not exist in your Colab secrets.\n",
+ "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n",
+ "You will be able to reuse this secret in all of your notebooks.\n",
+ "Please note that authentication is recommended but still optional to access public models or datasets.\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7dd5a75f180a48c68731494e10f5ed41",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "text_2.pt: 0%| | 0.00/5.35G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.11/dist-packages/bark/generation.py:212: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
+ " checkpoint = torch.load(ckpt_path, map_location=device)\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "ce67143299434d45a893b832a1e99c80",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer_config.json: 0%| | 0.00/49.0 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "cf3408e339a64792952a07c1948b4fdc",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "vocab.txt: 0%| | 0.00/996k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "248acbc74d254b4b9d095efc02309e58",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer.json: 0%| | 0.00/1.96M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "62a094b2f0af4fe3a461b0d8bdb2b557",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "config.json: 0%| | 0.00/625 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "47bcf8f33ccc42a4b5a423604250dda2",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "coarse_2.pt: 0%| | 0.00/3.93G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.11/dist-packages/bark/generation.py:212: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
+ " checkpoint = torch.load(ckpt_path, map_location=device)\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "31c9c918e0a94c0a8e0af5bd722dba68",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "fine_2.pt: 0%| | 0.00/3.74G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.11/dist-packages/torch/nn/utils/weight_norm.py:143: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n",
+ " WeightNorm.apply(module, name, dim)\n",
+ "Downloading: \"https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th\" to /root/.cache/torch/hub/checkpoints/encodec_24khz-d7cc33bc.th\n",
+ "100%|โโโโโโโโโโ| 88.9M/88.9M [00:01<00:00, 61.3MB/s]\n",
+ "Generating Audio: 0%| | 0/6 [00:00, ?it/s]/usr/local/lib/python3.11/dist-packages/bark/generation.py:175: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
+ " with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():\n",
+ "\n",
+ " 0%| | 0/768 [00:00, ?it/s]\u001b[A\n",
+ " 0%| | 1/768 [00:01<14:52, 1.16s/it]\u001b[A\n",
+ " 1%| | 7/768 [00:01<01:45, 7.23it/s]\u001b[A\n",
+ " 2%|โ | 13/768 [00:01<00:53, 14.09it/s]\u001b[A\n",
+ " 2%|โ | 19/768 [00:01<00:35, 21.11it/s]\u001b[A\n",
+ " 3%|โ | 25/768 [00:01<00:26, 27.86it/s]\u001b[A\n",
+ " 4%|โ | 31/768 [00:01<00:22, 33.29it/s]\u001b[A\n",
+ " 5%|โ | 37/768 [00:01<00:18, 38.68it/s]\u001b[A\n",
+ " 6%|โ | 43/768 [00:01<00:16, 42.86it/s]\u001b[A\n",
+ " 6%|โ | 49/768 [00:02<00:16, 43.24it/s]\u001b[A\n",
+ " 7%|โ | 55/768 [00:02<00:15, 46.20it/s]\u001b[A\n",
+ " 8%|โ | 61/768 [00:02<00:14, 48.75it/s]\u001b[A\n",
+ " 9%|โ | 67/768 [00:02<00:14, 49.79it/s]\u001b[A\n",
+ " 10%|โ | 73/768 [00:02<00:13, 51.57it/s]\u001b[A\n",
+ " 10%|โ | 79/768 [00:02<00:13, 52.93it/s]\u001b[A\n",
+ " 11%|โ | 85/768 [00:02<00:13, 52.01it/s]\u001b[A\n",
+ " 12%|โโ | 91/768 [00:02<00:12, 52.66it/s]\u001b[A\n",
+ " 13%|โโ | 97/768 [00:02<00:12, 53.29it/s]\u001b[A\n",
+ " 13%|โโ | 103/768 [00:03<00:13, 49.77it/s]\u001b[A\n",
+ " 14%|โโ | 109/768 [00:03<00:13, 49.80it/s]\u001b[A\n",
+ " 15%|โโ | 115/768 [00:03<00:13, 50.01it/s]\u001b[A\n",
+ " 16%|โโ | 121/768 [00:03<00:12, 49.91it/s]\u001b[A\n",
+ " 17%|โโ | 127/768 [00:03<00:12, 51.25it/s]\u001b[A\n",
+ " 17%|โโ | 133/768 [00:03<00:12, 51.95it/s]\u001b[A\n",
+ " 18%|โโ | 139/768 [00:03<00:12, 51.86it/s]\u001b[A\n",
+ " 19%|โโ | 145/768 [00:03<00:11, 52.69it/s]\u001b[A\n",
+ " 20%|โโ | 151/768 [00:04<00:12, 50.24it/s]\u001b[A\n",
+ " 20%|โโ | 157/768 [00:04<00:12, 50.38it/s]\u001b[A\n",
+ " 21%|โโ | 163/768 [00:04<00:11, 51.97it/s]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 165/165 [00:04<00:00, 38.37it/s]\n",
+ "\n",
+ " 0%| | 0/9 [00:00, ?it/s]\u001b[A\n",
+ " 11%|โ | 1/9 [00:01<00:10, 1.32s/it]\u001b[A\n",
+ " 22%|โโโ | 2/9 [00:02<00:09, 1.31s/it]\u001b[A\n",
+ " 33%|โโโโ | 3/9 [00:03<00:07, 1.31s/it]\u001b[A\n",
+ " 44%|โโโโโ | 4/9 [00:05<00:07, 1.45s/it]\u001b[A\n",
+ " 56%|โโโโโโ | 5/9 [00:07<00:05, 1.45s/it]\u001b[A\n",
+ " 67%|โโโโโโโ | 6/9 [00:08<00:04, 1.40s/it]\u001b[A\n",
+ " 78%|โโโโโโโโ | 7/9 [00:09<00:02, 1.36s/it]\u001b[A\n",
+ " 89%|โโโโโโโโโ | 8/9 [00:10<00:01, 1.34s/it]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 9/9 [00:11<00:00, 1.27s/it]\n",
+ "Generating Audio: 17%|โโ | 1/6 [00:18<01:32, 18.41s/it]\n",
+ " 0%| | 0/768 [00:00, ?it/s]\u001b[A\n",
+ " 0%| | 2/768 [00:00<00:44, 17.04it/s]\u001b[A\n",
+ " 1%| | 8/768 [00:00<00:19, 38.72it/s]\u001b[A\n",
+ " 2%|โ | 14/768 [00:00<00:16, 46.39it/s]\u001b[A\n",
+ " 3%|โ | 20/768 [00:00<00:14, 50.60it/s]\u001b[A\n",
+ " 3%|โ | 26/768 [00:00<00:14, 52.40it/s]\u001b[A\n",
+ " 4%|โ | 32/768 [00:00<00:14, 49.62it/s]\u001b[A\n",
+ " 5%|โ | 38/768 [00:00<00:14, 49.65it/s]\u001b[A\n",
+ " 6%|โ | 44/768 [00:00<00:13, 51.78it/s]\u001b[A\n",
+ " 7%|โ | 50/768 [00:01<00:13, 53.15it/s]\u001b[A\n",
+ " 7%|โ | 56/768 [00:01<00:13, 54.03it/s]\u001b[A\n",
+ " 8%|โ | 62/768 [00:01<00:12, 54.54it/s]\u001b[A\n",
+ " 9%|โ | 68/768 [00:01<00:12, 54.83it/s]\u001b[A\n",
+ " 10%|โ | 74/768 [00:01<00:13, 53.33it/s]\u001b[A\n",
+ " 10%|โ | 80/768 [00:01<00:12, 53.50it/s]\u001b[A\n",
+ " 11%|โ | 86/768 [00:01<00:13, 49.52it/s]\u001b[A\n",
+ " 12%|โโ | 92/768 [00:01<00:13, 49.84it/s]\u001b[A\n",
+ " 13%|โโ | 98/768 [00:01<00:13, 51.50it/s]\u001b[A\n",
+ " 14%|โโ | 104/768 [00:02<00:12, 52.56it/s]\u001b[A\n",
+ " 14%|โโ | 110/768 [00:02<00:12, 53.46it/s]\u001b[A\n",
+ " 15%|โโ | 116/768 [00:02<00:13, 49.77it/s]\u001b[A\n",
+ " 16%|โโ | 122/768 [00:02<00:14, 44.62it/s]\u001b[A\n",
+ " 17%|โโ | 127/768 [00:02<00:15, 41.94it/s]\u001b[A\n",
+ " 17%|โโ | 132/768 [00:02<00:15, 39.89it/s]\u001b[A\n",
+ " 18%|โโ | 137/768 [00:02<00:15, 39.57it/s]\u001b[A\n",
+ " 18%|โโ | 142/768 [00:02<00:15, 40.01it/s]\u001b[A\n",
+ " 19%|โโ | 147/768 [00:03<00:15, 40.12it/s]\u001b[A\n",
+ " 20%|โโ | 152/768 [00:03<00:15, 40.90it/s]\u001b[A\n",
+ " 20%|โโ | 157/768 [00:03<00:14, 41.27it/s]\u001b[A\n",
+ " 21%|โโ | 162/768 [00:03<00:14, 41.37it/s]\u001b[A\n",
+ " 22%|โโโ | 167/768 [00:03<00:15, 38.68it/s]\u001b[A\n",
+ " 22%|โโโ | 171/768 [00:03<00:16, 37.23it/s]\u001b[A\n",
+ " 23%|โโโ | 175/768 [00:03<00:16, 36.94it/s]\u001b[A\n",
+ " 23%|โโโ | 179/768 [00:03<00:16, 35.08it/s]\u001b[A\n",
+ " 24%|โโโ | 183/768 [00:04<00:16, 35.09it/s]\u001b[A\n",
+ " 24%|โโโ | 187/768 [00:04<00:16, 34.49it/s]\u001b[A\n",
+ " 25%|โโโ | 191/768 [00:04<00:16, 34.80it/s]\u001b[A\n",
+ " 26%|โโโ | 197/768 [00:04<00:14, 40.73it/s]\u001b[A\n",
+ " 26%|โโโ | 203/768 [00:04<00:12, 44.92it/s]\u001b[A\n",
+ " 27%|โโโ | 208/768 [00:04<00:12, 43.61it/s]\u001b[A\n",
+ " 28%|โโโ | 213/768 [00:04<00:12, 44.71it/s]\u001b[A\n",
+ " 28%|โโโ | 218/768 [00:04<00:11, 46.06it/s]\u001b[A\n",
+ " 29%|โโโ | 224/768 [00:04<00:11, 48.83it/s]\u001b[A\n",
+ " 30%|โโโ | 230/768 [00:05<00:10, 50.72it/s]\u001b[A\n",
+ " 31%|โโโ | 236/768 [00:05<00:10, 52.40it/s]\u001b[A\n",
+ " 32%|โโโโ | 242/768 [00:05<00:09, 52.89it/s]\u001b[A\n",
+ " 32%|โโโโ | 248/768 [00:05<00:09, 53.71it/s]\u001b[A\n",
+ " 33%|โโโโ | 254/768 [00:05<00:09, 54.21it/s]\u001b[A\n",
+ " 34%|โโโโ | 260/768 [00:05<00:10, 50.72it/s]\u001b[A\n",
+ " 35%|โโโโ | 266/768 [00:05<00:09, 52.04it/s]\u001b[A\n",
+ " 35%|โโโโ | 272/768 [00:05<00:10, 49.37it/s]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 272/272 [00:05<00:00, 46.04it/s]\n",
+ "\n",
+ " 0%| | 0/14 [00:00, ?it/s]\u001b[A\n",
+ " 7%|โ | 1/14 [00:01<00:17, 1.33s/it]\u001b[A\n",
+ " 14%|โโ | 2/14 [00:02<00:16, 1.38s/it]\u001b[A\n",
+ " 21%|โโโ | 3/14 [00:04<00:14, 1.35s/it]\u001b[A\n",
+ " 29%|โโโ | 4/14 [00:05<00:13, 1.33s/it]\u001b[A\n",
+ " 36%|โโโโ | 5/14 [00:06<00:11, 1.32s/it]\u001b[A\n",
+ " 43%|โโโโโ | 6/14 [00:07<00:10, 1.32s/it]\u001b[A\n",
+ " 50%|โโโโโ | 7/14 [00:09<00:09, 1.43s/it]\u001b[A\n",
+ " 57%|โโโโโโ | 8/14 [00:11<00:08, 1.44s/it]\u001b[A\n",
+ " 64%|โโโโโโโ | 9/14 [00:12<00:07, 1.40s/it]\u001b[A\n",
+ " 71%|โโโโโโโโ | 10/14 [00:13<00:05, 1.36s/it]\u001b[A\n",
+ " 79%|โโโโโโโโ | 11/14 [00:15<00:04, 1.35s/it]\u001b[A\n",
+ " 86%|โโโโโโโโโ | 12/14 [00:16<00:02, 1.34s/it]\u001b[A\n",
+ " 93%|โโโโโโโโโโ| 13/14 [00:17<00:01, 1.33s/it]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 14/14 [00:18<00:00, 1.32s/it]\n",
+ "Generating Audio: 33%|โโโโ | 2/6 [00:44<01:32, 23.18s/it]\n",
+ " 0%| | 0/768 [00:00, ?it/s]\u001b[A\n",
+ " 0%| | 1/768 [00:00<01:22, 9.30it/s]\u001b[A\n",
+ " 1%| | 5/768 [00:00<00:29, 25.59it/s]\u001b[A\n",
+ " 1%| | 9/768 [00:00<00:23, 31.73it/s]\u001b[A\n",
+ " 2%|โ | 14/768 [00:00<00:20, 36.03it/s]\u001b[A\n",
+ " 2%|โ | 18/768 [00:00<00:20, 36.00it/s]\u001b[A\n",
+ " 3%|โ | 23/768 [00:00<00:19, 37.93it/s]\u001b[A\n",
+ " 4%|โ | 28/768 [00:00<00:18, 40.13it/s]\u001b[A\n",
+ " 4%|โ | 33/768 [00:00<00:17, 41.35it/s]\u001b[A\n",
+ " 5%|โ | 38/768 [00:01<00:17, 40.89it/s]\u001b[A\n",
+ " 6%|โ | 43/768 [00:01<00:19, 36.41it/s]\u001b[A\n",
+ " 6%|โ | 47/768 [00:01<00:19, 36.61it/s]\u001b[A\n",
+ " 7%|โ | 51/768 [00:01<00:19, 37.17it/s]\u001b[A\n",
+ " 7%|โ | 55/768 [00:01<00:19, 36.41it/s]\u001b[A\n",
+ " 8%|โ | 59/768 [00:01<00:19, 36.65it/s]\u001b[A\n",
+ " 8%|โ | 63/768 [00:01<00:19, 35.56it/s]\u001b[A\n",
+ " 9%|โ | 67/768 [00:01<00:19, 36.40it/s]\u001b[A\n",
+ " 10%|โ | 73/768 [00:01<00:16, 41.27it/s]\u001b[A\n",
+ " 10%|โ | 78/768 [00:02<00:16, 42.03it/s]\u001b[A\n",
+ " 11%|โ | 83/768 [00:02<00:15, 43.03it/s]\u001b[A\n",
+ " 12%|โโ | 89/768 [00:02<00:14, 46.38it/s]\u001b[A\n",
+ " 12%|โโ | 95/768 [00:02<00:13, 49.67it/s]\u001b[A\n",
+ " 13%|โโ | 101/768 [00:02<00:12, 51.87it/s]\u001b[A\n",
+ " 14%|โโ | 107/768 [00:02<00:12, 52.46it/s]\u001b[A\n",
+ " 15%|โโ | 113/768 [00:02<00:12, 53.76it/s]\u001b[A\n",
+ " 15%|โโ | 119/768 [00:02<00:11, 54.59it/s]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 121/121 [00:02<00:00, 42.17it/s]\n",
+ "\n",
+ " 0%| | 0/7 [00:00, ?it/s]\u001b[A\n",
+ " 14%|โโ | 1/7 [00:01<00:07, 1.31s/it]\u001b[A\n",
+ " 29%|โโโ | 2/7 [00:02<00:06, 1.31s/it]\u001b[A\n",
+ " 43%|โโโโโ | 3/7 [00:03<00:05, 1.31s/it]\u001b[A\n",
+ " 57%|โโโโโโ | 4/7 [00:05<00:03, 1.32s/it]\u001b[A\n",
+ " 71%|โโโโโโโโ | 5/7 [00:06<00:02, 1.32s/it]\u001b[A\n",
+ " 86%|โโโโโโโโโ | 6/7 [00:07<00:01, 1.32s/it]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 7/7 [00:08<00:00, 1.17s/it]\n",
+ "Generating Audio: 50%|โโโโโ | 3/6 [00:58<00:55, 18.62s/it]\n",
+ " 0%| | 0/768 [00:00, ?it/s]\u001b[A\n",
+ " 0%| | 1/768 [00:00<01:29, 8.61it/s]\u001b[A\n",
+ " 1%| | 5/768 [00:00<00:30, 25.27it/s]\u001b[A\n",
+ " 1%| | 9/768 [00:00<00:26, 28.70it/s]\u001b[A\n",
+ " 2%|โ | 13/768 [00:00<00:23, 31.82it/s]\u001b[A\n",
+ " 2%|โ | 17/768 [00:00<00:23, 32.20it/s]\u001b[A\n",
+ " 3%|โ | 21/768 [00:00<00:22, 33.05it/s]\u001b[A\n",
+ " 4%|โ | 27/768 [00:00<00:18, 39.95it/s]\u001b[A\n",
+ " 4%|โ | 32/768 [00:00<00:17, 42.34it/s]\u001b[A\n",
+ " 5%|โ | 37/768 [00:01<00:16, 43.95it/s]\u001b[A\n",
+ " 6%|โ | 43/768 [00:01<00:15, 47.63it/s]\u001b[A\n",
+ " 6%|โ | 48/768 [00:01<00:14, 48.22it/s]\u001b[A\n",
+ " 7%|โ | 54/768 [00:01<00:14, 50.95it/s]\u001b[A\n",
+ " 8%|โ | 60/768 [00:01<00:13, 52.80it/s]\u001b[A\n",
+ " 9%|โ | 66/768 [00:01<00:12, 54.10it/s]\u001b[A\n",
+ " 9%|โ | 72/768 [00:01<00:12, 55.11it/s]\u001b[A\n",
+ " 10%|โ | 78/768 [00:01<00:12, 55.31it/s]\u001b[A\n",
+ " 11%|โ | 84/768 [00:01<00:12, 55.26it/s]\u001b[A\n",
+ " 12%|โโ | 90/768 [00:01<00:13, 50.42it/s]\u001b[A\n",
+ " 12%|โโ | 96/768 [00:02<00:13, 51.40it/s]\u001b[A\n",
+ " 13%|โโ | 102/768 [00:02<00:12, 51.25it/s]\u001b[A\n",
+ " 14%|โโ | 108/768 [00:02<00:12, 52.01it/s]\u001b[A\n",
+ " 15%|โโ | 114/768 [00:02<00:12, 53.16it/s]\u001b[A\n",
+ " 16%|โโ | 120/768 [00:02<00:11, 54.04it/s]\u001b[A\n",
+ " 16%|โโ | 126/768 [00:02<00:11, 54.42it/s]\u001b[A\n",
+ " 17%|โโ | 132/768 [00:02<00:11, 54.12it/s]\u001b[A\n",
+ " 18%|โโ | 138/768 [00:02<00:11, 53.18it/s]\u001b[A\n",
+ " 19%|โโ | 144/768 [00:03<00:12, 51.19it/s]\u001b[A\n",
+ " 20%|โโ | 150/768 [00:03<00:11, 51.80it/s]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 150/150 [00:03<00:00, 47.89it/s]\n",
+ "\n",
+ " 0%| | 0/8 [00:00, ?it/s]\u001b[A\n",
+ " 12%|โโ | 1/8 [00:01<00:09, 1.36s/it]\u001b[A\n",
+ " 25%|โโโ | 2/8 [00:02<00:08, 1.33s/it]\u001b[A\n",
+ " 38%|โโโโ | 3/8 [00:03<00:06, 1.32s/it]\u001b[A\n",
+ " 50%|โโโโโ | 4/8 [00:05<00:05, 1.32s/it]\u001b[A\n",
+ " 62%|โโโโโโโ | 5/8 [00:06<00:03, 1.31s/it]\u001b[A\n",
+ " 75%|โโโโโโโโ | 6/8 [00:08<00:02, 1.37s/it]\u001b[A\n",
+ " 88%|โโโโโโโโโ | 7/8 [00:09<00:01, 1.46s/it]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 8/8 [00:10<00:00, 1.32s/it]\n",
+ "Generating Audio: 67%|โโโโโโโ | 4/6 [01:13<00:34, 17.49s/it]\n",
+ " 0%| | 0/768 [00:00, ?it/s]\u001b[A\n",
+ " 0%| | 1/768 [00:00<01:18, 9.80it/s]\u001b[A\n",
+ " 1%| | 6/768 [00:00<00:23, 32.88it/s]\u001b[A\n",
+ " 2%|โ | 12/768 [00:00<00:17, 43.75it/s]\u001b[A\n",
+ " 2%|โ | 18/768 [00:00<00:16, 46.83it/s]\u001b[A\n",
+ " 3%|โ | 24/768 [00:00<00:14, 49.95it/s]\u001b[A\n",
+ " 4%|โ | 30/768 [00:00<00:14, 52.20it/s]\u001b[A\n",
+ " 5%|โ | 36/768 [00:00<00:14, 52.15it/s]\u001b[A\n",
+ " 5%|โ | 42/768 [00:00<00:14, 51.83it/s]\u001b[A\n",
+ " 6%|โ | 48/768 [00:00<00:13, 52.62it/s]\u001b[A\n",
+ " 7%|โ | 54/768 [00:01<00:13, 53.93it/s]\u001b[A\n",
+ " 8%|โ | 60/768 [00:01<00:14, 50.02it/s]\u001b[A\n",
+ " 9%|โ | 66/768 [00:01<00:13, 51.75it/s]\u001b[A\n",
+ " 9%|โ | 72/768 [00:01<00:13, 52.19it/s]\u001b[A\n",
+ " 10%|โ | 78/768 [00:01<00:13, 52.75it/s]\u001b[A\n",
+ " 11%|โ | 84/768 [00:01<00:12, 53.45it/s]\u001b[A\n",
+ " 12%|โโ | 90/768 [00:01<00:12, 53.32it/s]\u001b[A\n",
+ " 12%|โโ | 96/768 [00:01<00:12, 52.50it/s]\u001b[A\n",
+ " 13%|โโ | 102/768 [00:02<00:12, 53.22it/s]\u001b[A\n",
+ " 14%|โโ | 108/768 [00:02<00:12, 52.56it/s]\u001b[A\n",
+ " 15%|โโ | 114/768 [00:02<00:13, 49.85it/s]\u001b[A\n",
+ " 16%|โโ | 120/768 [00:02<00:12, 51.14it/s]\u001b[A\n",
+ " 16%|โโ | 126/768 [00:02<00:12, 50.20it/s]\u001b[A\n",
+ " 17%|โโ | 132/768 [00:02<00:12, 51.04it/s]\u001b[A\n",
+ " 18%|โโ | 138/768 [00:02<00:12, 51.32it/s]\u001b[A\n",
+ " 19%|โโ | 144/768 [00:02<00:12, 51.50it/s]\u001b[A\n",
+ " 20%|โโ | 150/768 [00:02<00:12, 51.40it/s]\u001b[A\n",
+ " 20%|โโ | 156/768 [00:03<00:11, 52.47it/s]\u001b[A\n",
+ " 21%|โโ | 162/768 [00:03<00:12, 49.17it/s]\u001b[A\n",
+ " 22%|โโโ | 168/768 [00:03<00:11, 50.49it/s]\u001b[A\n",
+ " 23%|โโโ | 174/768 [00:03<00:11, 51.86it/s]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 175/175 [00:03<00:00, 50.68it/s]\n",
+ "\n",
+ " 0%| | 0/9 [00:00, ?it/s]\u001b[A\n",
+ " 11%|โ | 1/9 [00:01<00:10, 1.33s/it]\u001b[A\n",
+ " 22%|โโโ | 2/9 [00:02<00:09, 1.32s/it]\u001b[A\n",
+ " 33%|โโโโ | 3/9 [00:04<00:08, 1.42s/it]\u001b[A\n",
+ " 44%|โโโโโ | 4/9 [00:05<00:07, 1.50s/it]\u001b[A\n",
+ " 56%|โโโโโโ | 5/9 [00:07<00:05, 1.44s/it]\u001b[A\n",
+ " 67%|โโโโโโโ | 6/9 [00:08<00:04, 1.41s/it]\u001b[A\n",
+ " 78%|โโโโโโโโ | 7/9 [00:09<00:02, 1.37s/it]\u001b[A\n",
+ " 89%|โโโโโโโโโ | 8/9 [00:11<00:01, 1.36s/it]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 9/9 [00:12<00:00, 1.36s/it]\n",
+ "Generating Audio: 83%|โโโโโโโโโ | 5/6 [01:31<00:17, 17.57s/it]\n",
+ " 0%| | 0/768 [00:00, ?it/s]\u001b[A\n",
+ " 0%| | 1/768 [00:00<01:17, 9.86it/s]\u001b[A\n",
+ " 1%| | 7/768 [00:00<00:20, 37.42it/s]\u001b[A\n",
+ " 2%|โ | 13/768 [00:00<00:16, 45.38it/s]\u001b[A\n",
+ " 2%|โ | 19/768 [00:00<00:16, 46.67it/s]\u001b[A\n",
+ " 3%|โ | 25/768 [00:00<00:14, 49.83it/s]\u001b[A\n",
+ " 4%|โ | 30/768 [00:00<00:15, 49.12it/s]\u001b[A\n",
+ " 5%|โ | 36/768 [00:00<00:14, 50.12it/s]\u001b[A\n",
+ " 5%|โ | 42/768 [00:00<00:13, 51.97it/s]\u001b[A\n",
+ " 6%|โ | 48/768 [00:00<00:13, 53.23it/s]\u001b[A\n",
+ " 7%|โ | 54/768 [00:01<00:13, 53.77it/s]\u001b[A\n",
+ " 8%|โ | 60/768 [00:01<00:15, 46.72it/s]\u001b[A\n",
+ " 8%|โ | 65/768 [00:01<00:16, 43.18it/s]\u001b[A\n",
+ " 9%|โ | 70/768 [00:01<00:16, 41.19it/s]\u001b[A\n",
+ " 10%|โ | 75/768 [00:01<00:17, 39.54it/s]\u001b[A\n",
+ " 10%|โ | 80/768 [00:01<00:17, 39.30it/s]\u001b[A\n",
+ " 11%|โ | 85/768 [00:01<00:17, 38.59it/s]\u001b[A\n",
+ " 12%|โโ | 89/768 [00:02<00:17, 38.46it/s]\u001b[A\n",
+ " 12%|โโ | 94/768 [00:02<00:16, 39.82it/s]\u001b[A\n",
+ " 13%|โโ | 99/768 [00:02<00:16, 40.93it/s]\u001b[A\n",
+ " 14%|โโ | 104/768 [00:02<00:15, 41.73it/s]\u001b[A\n",
+ " 14%|โโ | 109/768 [00:02<00:17, 38.03it/s]\u001b[A\n",
+ " 15%|โโ | 113/768 [00:02<00:17, 37.13it/s]\u001b[A\n",
+ " 15%|โโ | 117/768 [00:02<00:17, 36.82it/s]\u001b[A\n",
+ " 16%|โโ | 121/768 [00:02<00:18, 35.63it/s]\u001b[A\n",
+ " 16%|โโ | 125/768 [00:03<00:17, 35.75it/s]\u001b[A\n",
+ " 17%|โโ | 129/768 [00:03<00:18, 35.01it/s]\u001b[A\n",
+ " 17%|โโ | 133/768 [00:03<00:17, 35.47it/s]\u001b[A\n",
+ " 18%|โโ | 139/768 [00:03<00:15, 40.94it/s]\u001b[A\n",
+ " 19%|โโ | 144/768 [00:03<00:14, 42.01it/s]\u001b[A\n",
+ " 19%|โโ | 149/768 [00:03<00:14, 43.59it/s]\u001b[A\n",
+ " 20%|โโ | 155/768 [00:03<00:13, 46.90it/s]\u001b[A\n",
+ " 21%|โโ | 160/768 [00:03<00:12, 47.71it/s]\u001b[A\n",
+ " 22%|โโโ | 166/768 [00:03<00:12, 50.04it/s]\u001b[A\n",
+ " 22%|โโโ | 172/768 [00:03<00:11, 51.12it/s]\u001b[A\n",
+ " 23%|โโโ | 178/768 [00:04<00:11, 50.05it/s]\u001b[A\n",
+ " 24%|โโโ | 184/768 [00:04<00:11, 50.94it/s]\u001b[A\n",
+ " 25%|โโโ | 190/768 [00:04<00:11, 50.83it/s]\u001b[A\n",
+ " 26%|โโโ | 196/768 [00:04<00:11, 48.69it/s]\u001b[A\n",
+ " 26%|โโโ | 202/768 [00:04<00:11, 50.78it/s]\u001b[A\n",
+ " 27%|โโโ | 208/768 [00:04<00:10, 52.50it/s]\u001b[A\n",
+ " 28%|โโโ | 214/768 [00:04<00:10, 51.99it/s]\u001b[A\n",
+ " 29%|โโโ | 220/768 [00:04<00:10, 52.59it/s]\u001b[A\n",
+ " 29%|โโโ | 226/768 [00:05<00:10, 53.55it/s]\u001b[A\n",
+ " 30%|โโโ | 232/768 [00:05<00:10, 52.65it/s]\u001b[A\n",
+ " 31%|โโโ | 238/768 [00:05<00:09, 53.17it/s]\u001b[A\n",
+ " 32%|โโโโ | 244/768 [00:05<00:09, 53.52it/s]\u001b[A\n",
+ " 33%|โโโโ | 250/768 [00:05<00:10, 49.63it/s]\u001b[A\n",
+ " 33%|โโโโ | 256/768 [00:05<00:09, 51.40it/s]\u001b[A\n",
+ " 34%|โโโโ | 262/768 [00:05<00:09, 52.43it/s]\u001b[A\n",
+ " 35%|โโโโ | 268/768 [00:05<00:09, 51.48it/s]\u001b[A\n",
+ " 36%|โโโโ | 274/768 [00:05<00:09, 52.60it/s]\u001b[A\n",
+ " 36%|โโโโ | 280/768 [00:06<00:09, 53.72it/s]\u001b[A\n",
+ " 37%|โโโโ | 286/768 [00:06<00:08, 54.33it/s]\u001b[A\n",
+ " 38%|โโโโ | 292/768 [00:06<00:08, 54.27it/s]\u001b[A\n",
+ " 39%|โโโโ | 298/768 [00:06<00:08, 54.34it/s]\u001b[A\n",
+ " 40%|โโโโ | 304/768 [00:06<00:09, 50.06it/s]\u001b[A\n",
+ " 40%|โโโโ | 310/768 [00:06<00:08, 51.50it/s]\u001b[A\n",
+ " 41%|โโโโ | 316/768 [00:06<00:08, 52.27it/s]\u001b[A\n",
+ " 42%|โโโโโ | 322/768 [00:06<00:08, 51.50it/s]\u001b[A\n",
+ " 43%|โโโโโ | 328/768 [00:06<00:08, 52.77it/s]\u001b[A\n",
+ " 43%|โโโโโ | 334/768 [00:07<00:08, 53.35it/s]\u001b[A\n",
+ " 44%|โโโโโ | 340/768 [00:07<00:08, 53.38it/s]\u001b[A\n",
+ " 45%|โโโโโ | 346/768 [00:07<00:07, 53.45it/s]\u001b[A\n",
+ " 46%|โโโโโ | 352/768 [00:07<00:08, 51.59it/s]\u001b[A\n",
+ " 47%|โโโโโ | 358/768 [00:07<00:08, 50.43it/s]\u001b[A\n",
+ " 47%|โโโโโ | 364/768 [00:07<00:07, 51.58it/s]\u001b[A\n",
+ " 48%|โโโโโ | 370/768 [00:07<00:07, 50.52it/s]\u001b[A\n",
+ " 49%|โโโโโ | 376/768 [00:07<00:07, 49.84it/s]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 377/377 [00:07<00:00, 47.41it/s]\n",
+ "\n",
+ " 0%| | 0/19 [00:00, ?it/s]\u001b[A\n",
+ " 5%|โ | 1/19 [00:01<00:23, 1.32s/it]\u001b[A\n",
+ " 11%|โ | 2/19 [00:02<00:22, 1.32s/it]\u001b[A\n",
+ " 16%|โโ | 3/19 [00:03<00:20, 1.31s/it]\u001b[A\n",
+ " 21%|โโ | 4/19 [00:05<00:19, 1.31s/it]\u001b[A\n",
+ " 26%|โโโ | 5/19 [00:06<00:20, 1.45s/it]\u001b[A\n",
+ " 32%|โโโโ | 6/19 [00:08<00:18, 1.40s/it]\u001b[A\n",
+ " 37%|โโโโ | 7/19 [00:09<00:16, 1.37s/it]\u001b[A\n",
+ " 42%|โโโโโ | 8/19 [00:10<00:14, 1.35s/it]\u001b[A\n",
+ " 47%|โโโโโ | 9/19 [00:12<00:13, 1.33s/it]\u001b[A\n",
+ " 53%|โโโโโโ | 10/19 [00:13<00:11, 1.33s/it]\u001b[A\n",
+ " 58%|โโโโโโ | 11/19 [00:14<00:10, 1.32s/it]\u001b[A\n",
+ " 63%|โโโโโโโ | 12/19 [00:16<00:09, 1.32s/it]\u001b[A\n",
+ " 68%|โโโโโโโ | 13/19 [00:17<00:08, 1.36s/it]\u001b[A\n",
+ " 74%|โโโโโโโโ | 14/19 [00:19<00:07, 1.46s/it]\u001b[A\n",
+ " 79%|โโโโโโโโ | 15/19 [00:20<00:05, 1.41s/it]\u001b[A\n",
+ " 84%|โโโโโโโโโ | 16/19 [00:21<00:04, 1.38s/it]\u001b[A\n",
+ " 89%|โโโโโโโโโ | 17/19 [00:23<00:02, 1.36s/it]\u001b[A\n",
+ " 95%|โโโโโโโโโโ| 18/19 [00:24<00:01, 1.35s/it]\u001b[A\n",
+ "100%|โโโโโโโโโโ| 19/19 [00:25<00:00, 1.35s/it]\n",
+ "Generating Audio: 100%|โโโโโโโโโโ| 6/6 [02:09<00:00, 21.54s/it]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "โ
Saved final part: sample_data/output_part_1.wav\n",
+ "๐ Audio generation complete!\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from bark import srt_to_audio\n",
+ "\n",
+ "# Path to your SRT file\n",
+ "\n",
+ "# Generate audio from SRT\n",
+ "audio_array = srt_to_audio(\n",
+ " srt_file_path=\"data/subtitle.srt\", # Path to your SRT file\n",
+ " output_dir=\"sample_data/\" # Output directory\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "mYbpMXbo2AmW"
+ },
+ "outputs": [],
+ "source": [
+ "\n",
+ "import IPython.display as ipd\n",
+ "import librosa\n",
+ "\n",
+ "# Replace 'your_audio_file.wav' with the actual path to your WAV file\n",
+ "audio_file_path = '/content/sample_data/output_part_1.wav'\n",
+ "\n",
+ "try:\n",
+ " # Load the audio file using librosa\n",
+ " audio_data, sample_rate = librosa.load(audio_file_path)\n",
+ "\n",
+ " # Play the audio using IPython.display.Audio\n",
+ " ipd.Audio(audio_data, rate=sample_rate)\n",
+ "\n",
+ "except FileNotFoundError:\n",
+ " print(f\"Error: Audio file not found at {audio_file_path}\")\n",
+ "except Exception as e:\n",
+ " print(f\"An error occurred: {e}\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 75
+ },
+ "id": "3McUbYTX3hMW",
+ "outputId": "d480848a-a425-4d1a-872c-4048052867fb"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ " Your browser does not support the audio element.\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ipd.Audio(audio_data, rate=sample_rate)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "QWIgB3sI3rS6"
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "accelerator": "GPU",
+ "colab": {
+ "gpuType": "T4",
+ "provenance": []
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "00801fcc96624851b4a87a19c11c0575": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_941661c381514d5d9aa03f293e85869c",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_310a2598500d4ddcbf5c04bdb8a1d23e",
+ "value": "tokenizer.json:โ100%"
+ }
+ },
+ "00cc1e3427b24e07a914ca216654c848": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6fee8b6f73674d82ab8401e7dda4a2ea",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_c0671d8a122b49c9a7b4004c15685fb9",
+ "value": "coarse_2.pt:โ100%"
+ }
+ },
+ "00ec1679d1304d58897d36a81517af7f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0269ffcd98d74348af38eb61eb016547": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "070b495a389d4072bf6d4977e656cb0f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "15fbd21c5c4c44bc90552c5e8a0e4446": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "19e4d61763334041b28166b1d2877343": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d043de3c64af4704a7bae5e0f88ce7cc",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_bd96f8c1e3554d0e91c890d5ba7578c0",
+ "value": "tokenizer_config.json:โ100%"
+ }
+ },
+ "2382c8251c4c417d8e76ca79496aa1f0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "248acbc74d254b4b9d095efc02309e58": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_00801fcc96624851b4a87a19c11c0575",
+ "IPY_MODEL_d95e095d7d124d669a6f9a52a0dc4d8b",
+ "IPY_MODEL_81b5b4d0f17f4134af474d7beb938cb1"
+ ],
+ "layout": "IPY_MODEL_e4b6767fd1494804813633c963ff1c40"
+ }
+ },
+ "24f9937d1baf4f3f8a884853025733ce": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "26fb34c8844945dca3b290309469b8b7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "283b67bf6ebc4dd0b770e315b970c1d3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "28b18a24df954510bfaad04f25c1577f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2a60a936dfc64d7d9abcc5656b234f89": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2e1fb2c5c5584f58a98a81b1c46579c7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "300e6316a4d44a919a175ac07a701fe1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "310a2598500d4ddcbf5c04bdb8a1d23e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "31c9c918e0a94c0a8e0af5bd722dba68": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6fb3122db6e34c5eaa83e5c085bf68db",
+ "IPY_MODEL_ea3c07e86a59491aadd8be47becfbef5",
+ "IPY_MODEL_97eeb883d6cb4fc3a4329504cac8d3b2"
+ ],
+ "layout": "IPY_MODEL_36e7765ba89f4a0f8e185f8f991511e8"
+ }
+ },
+ "32d83b03d1794cf8b8208615b5ffbe8a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "36d98bf10431442c8b48d715c2cf8b7e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "36e7765ba89f4a0f8e185f8f991511e8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3fb182d8656c47d78b4fb93377dc208b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4201af9d8a67432d81c1ec36d985a0c9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "47bcf8f33ccc42a4b5a423604250dda2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_00cc1e3427b24e07a914ca216654c848",
+ "IPY_MODEL_85969305aafa4bb7a24b403309d39767",
+ "IPY_MODEL_66109b56a646486f89ecbc0f7d2adafd"
+ ],
+ "layout": "IPY_MODEL_a9bd87d2586b45499d464d2682416d0e"
+ }
+ },
+ "48beb862bc314f759e41c7695d695c5f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "4fef8b1235f04ceb8e71a049c896f321": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "52b372a2743c4a8388f1b906d84e5e3f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b2e6d8eb41d547bfa05572242bf4ee85",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_4201af9d8a67432d81c1ec36d985a0c9",
+ "value": "โ49.0/49.0โ[00:00<00:00,โ3.69kB/s]"
+ }
+ },
+ "52fe963dcc4745839afee7684bdadc6b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "530f57064838444c955e7e227296c519": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d115c3dac27445cf8478e0aabc8bec07",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_24f9937d1baf4f3f8a884853025733ce",
+ "value": "config.json:โ100%"
+ }
+ },
+ "542e61e25d6647699db75f4c93324408": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5fe880ba5a254b209f713622b87ad5f0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "62a094b2f0af4fe3a461b0d8bdb2b557": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_530f57064838444c955e7e227296c519",
+ "IPY_MODEL_d946bdc0c9ca4bf59e8989c0cf6d80b4",
+ "IPY_MODEL_bc21e3bd08bf4a05bc3d4247586f197b"
+ ],
+ "layout": "IPY_MODEL_36d98bf10431442c8b48d715c2cf8b7e"
+ }
+ },
+ "66109b56a646486f89ecbc0f7d2adafd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_00ec1679d1304d58897d36a81517af7f",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_15fbd21c5c4c44bc90552c5e8a0e4446",
+ "value": "โ3.93G/3.93Gโ[00:31<00:00,โ218MB/s]"
+ }
+ },
+ "6a6cc92dfb4449d9af962267b63aa35c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3fb182d8656c47d78b4fb93377dc208b",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_4fef8b1235f04ceb8e71a049c896f321",
+ "value": "vocab.txt:โ100%"
+ }
+ },
+ "6f27c5d11b5c43e3940c900dc1ebd3ba": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6fb3122db6e34c5eaa83e5c085bf68db": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9bc5830268d4407795e3d53b3849011f",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_c02b531f633c4bd68af5281f13be0c76",
+ "value": "fine_2.pt:โ100%"
+ }
+ },
+ "6fee8b6f73674d82ab8401e7dda4a2ea": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "724f93dfda034b1db056fb0d109f652b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "7cafb08baea44e2091d03749bf2c090e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "7dd5a75f180a48c68731494e10f5ed41": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f9fab93c9a1a4c22a6e1afa777cc423a",
+ "IPY_MODEL_91b165944dbe4f81825a4d839c592ad7",
+ "IPY_MODEL_a65c7cf3dfe045a5b0af44425ad65e94"
+ ],
+ "layout": "IPY_MODEL_d77ce3389f20460aae48b1d3fcd0d211"
+ }
+ },
+ "81b5b4d0f17f4134af474d7beb938cb1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_dc63436fe5d74d2e8d6035f8203ba983",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_a801f43c199c4817847839a52164237a",
+ "value": "โ1.96M/1.96Mโ[00:00<00:00,โ9.02MB/s]"
+ }
+ },
+ "85969305aafa4bb7a24b403309d39767": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_300e6316a4d44a919a175ac07a701fe1",
+ "max": 3934534533,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b9981acfff5c47cb9e110057931b841e",
+ "value": 3934534533
+ }
+ },
+ "91b165944dbe4f81825a4d839c592ad7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f716da801acf497598762e2ec50d7a77",
+ "max": 5353258741,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_26fb34c8844945dca3b290309469b8b7",
+ "value": 5353258741
+ }
+ },
+ "941661c381514d5d9aa03f293e85869c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "97eeb883d6cb4fc3a4329504cac8d3b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f162f2375f0149fc8e4c07a9cd855aa0",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_283b67bf6ebc4dd0b770e315b970c1d3",
+ "value": "โ3.74G/3.74Gโ[00:49<00:00,โ18.3MB/s]"
+ }
+ },
+ "9bc5830268d4407795e3d53b3849011f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a65c7cf3dfe045a5b0af44425ad65e94": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2e1fb2c5c5584f58a98a81b1c46579c7",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_28b18a24df954510bfaad04f25c1577f",
+ "value": "โ5.35G/5.35Gโ[00:30<00:00,โ173MB/s]"
+ }
+ },
+ "a801f43c199c4817847839a52164237a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "a9bd87d2586b45499d464d2682416d0e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b2e6d8eb41d547bfa05572242bf4ee85": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b9981acfff5c47cb9e110057931b841e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "bc21e3bd08bf4a05bc3d4247586f197b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_fd6c97919ed94ef7ad43ce97f9d2fa36",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_0269ffcd98d74348af38eb61eb016547",
+ "value": "โ625/625โ[00:00<00:00,โ47.7kB/s]"
+ }
+ },
+ "bc81b1263abd402fbd60914631be6765": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bd74d76ba6514db59a8187578eed3f7b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "bd96f8c1e3554d0e91c890d5ba7578c0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c02b531f633c4bd68af5281f13be0c76": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c0671d8a122b49c9a7b4004c15685fb9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c5ef1a138b6c42eb8ccb98ce59526c0c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c810176b3fac49aaa766fb3beb6f7c9c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2382c8251c4c417d8e76ca79496aa1f0",
+ "max": 995526,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_724f93dfda034b1db056fb0d109f652b",
+ "value": 995526
+ }
+ },
+ "ce67143299434d45a893b832a1e99c80": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_19e4d61763334041b28166b1d2877343",
+ "IPY_MODEL_fc042880a22641a099b1bb39150b6667",
+ "IPY_MODEL_52b372a2743c4a8388f1b906d84e5e3f"
+ ],
+ "layout": "IPY_MODEL_5fe880ba5a254b209f713622b87ad5f0"
+ }
+ },
+ "cf3408e339a64792952a07c1948b4fdc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_6a6cc92dfb4449d9af962267b63aa35c",
+ "IPY_MODEL_c810176b3fac49aaa766fb3beb6f7c9c",
+ "IPY_MODEL_df0b174ea7044a06970f4e3b008c23a0"
+ ],
+ "layout": "IPY_MODEL_bc81b1263abd402fbd60914631be6765"
+ }
+ },
+ "d043de3c64af4704a7bae5e0f88ce7cc": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d115c3dac27445cf8478e0aabc8bec07": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d77ce3389f20460aae48b1d3fcd0d211": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d946bdc0c9ca4bf59e8989c0cf6d80b4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_32d83b03d1794cf8b8208615b5ffbe8a",
+ "max": 625,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_dbef85ee69614ce9b7051fc7fafae0b1",
+ "value": 625
+ }
+ },
+ "d95e095d7d124d669a6f9a52a0dc4d8b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_48beb862bc314f759e41c7695d695c5f",
+ "max": 1961828,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_7cafb08baea44e2091d03749bf2c090e",
+ "value": 1961828
+ }
+ },
+ "dbef85ee69614ce9b7051fc7fafae0b1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "dc63436fe5d74d2e8d6035f8203ba983": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "df0b174ea7044a06970f4e3b008c23a0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_070b495a389d4072bf6d4977e656cb0f",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_bd74d76ba6514db59a8187578eed3f7b",
+ "value": "โ996k/996kโ[00:00<00:00,โ4.26MB/s]"
+ }
+ },
+ "e4b6767fd1494804813633c963ff1c40": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "e4ff0e6e07f5460494749dd0529c1eb8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ea3c07e86a59491aadd8be47becfbef5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_542e61e25d6647699db75f4c93324408",
+ "max": 3741740229,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c5ef1a138b6c42eb8ccb98ce59526c0c",
+ "value": 3741740229
+ }
+ },
+ "f162f2375f0149fc8e4c07a9cd855aa0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f716da801acf497598762e2ec50d7a77": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f9fab93c9a1a4c22a6e1afa777cc423a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2a60a936dfc64d7d9abcc5656b234f89",
+ "placeholder": "โ",
+ "style": "IPY_MODEL_e4ff0e6e07f5460494749dd0529c1eb8",
+ "value": "text_2.pt:โ100%"
+ }
+ },
+ "fc042880a22641a099b1bb39150b6667": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6f27c5d11b5c43e3940c900dc1ebd3ba",
+ "max": 49,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_52fe963dcc4745839afee7684bdadc6b",
+ "value": 49
+ }
+ },
+ "fd6c97919ed94ef7ad43ce97f9d2fa36": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ }
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/notebooks/data/subtitle.srt b/notebooks/data/subtitle.srt
new file mode 100644
index 0000000..4d2a4b2
--- /dev/null
+++ b/notebooks/data/subtitle.srt
@@ -0,0 +1,23 @@
+1
+00:00:01,599 --> 00:00:06,600
+Hello and welcome to CubicIn and this
+
+2
+00:00:06,600 --> 00:00:10,599
+platform helps students and teachers in
+
+3
+00:00:10,599 --> 00:00:12,440
+making quizzes.
+
+4
+00:00:12,440 --> 00:00:16,800
+This quiz is AI based, so it is
+
+5
+00:00:16,800 --> 00:00:20,199
+unique every time and it
+
+6
+00:00:20,199 --> 00:00:24,240
+basically makes quizzes by following the structure of the syllabus and government and or
diff --git a/pyproject.toml b/pyproject.toml
index 16d284b..8d5cd4b 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -25,7 +25,7 @@ dependencies = [
"torch",
"tqdm",
"transformers",
-]
+ "pydub",]
[project.urls]
source = "https://github.com/suno-ai/bark"