Updated Similarity Metrics (markdown)

master
jingkl 2021-10-19 15:09:24 +08:00
parent 3c33a8cb36
commit 1b6a9f6a5e
1 changed files with 44 additions and 0 deletions

@ -198,5 +198,49 @@ Where
- N<sub>AB</sub> specifies the number of shared bits in the fingerprint of molecular A and B.
For example:
**In python**
```python
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
# create a collection
collection_name = "milvus_test"
default_fields = [
FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name="vector", dtype=DataType.FLOAT_VECTOR, dim=d)
]default_schema = CollectionSchema(fields=default_fields, description="test collection")
print(f"\nCreate collection...")
collection = Collection(name= collection_name, schema=default_schema)
# insert data
import random
vectors = [[random.random() for _ in range(8)] for _ in range(10)]
entities = [vectors]
mr = collection.insert(entities)
print(collection.num_entities)
# create index
collection.create_index(field_name=field_name,
index_params={'index_type': 'IVF_FLAT',
'metric_type': 'JACCARD',
'params': {
"M": 16, # int. 4~64
"efConstruction": 40 # int. 8~512
}})
collection.load()
# search
top_k = 10
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
results = collection.search(vectors[:5], anns_field="vector", param=search_params,limit=top_k)
# show results
for result in results:
print(result.ids)
print(result.distance)
```