milvus/internal/util/function/models/openai/openai_embedding.go

226 lines
5.9 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package openai
import (
"bytes"
"context"
"encoding/json"
"fmt"
"net/http"
"net/url"
"sort"
"time"
"github.com/milvus-io/milvus/internal/util/function/models/utils"
)
type EmbeddingRequest struct {
// ID of the model to use.
Model string `json:"model"`
// Input text to embed, encoded as a string.
Input []string `json:"input"`
// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
User string `json:"user,omitempty"`
// The format to return the embeddings in. Can be either float or base64.
EncodingFormat string `json:"encoding_format,omitempty"`
// The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
Dimensions int `json:"dimensions,omitempty"`
}
type Usage struct {
// The number of tokens used by the prompt.
PromptTokens int `json:"prompt_tokens"`
// The total number of tokens used by the request.
TotalTokens int `json:"total_tokens"`
}
type EmbeddingData struct {
// The object type, which is always "embedding".
Object string `json:"object"`
// The embedding vector, which is a list of floats.
Embedding []float32 `json:"embedding"`
// The index of the embedding in the list of embeddings.
Index int `json:"index"`
}
type EmbeddingResponse struct {
// The object type, which is always "list".
Object string `json:"object"`
// The list of embeddings generated by the model.
Data []EmbeddingData `json:"data"`
// The name of the model used to generate the embedding.
Model string `json:"model"`
// The usage information for the request.
Usage Usage `json:"usage"`
}
type ByIndex struct {
resp *EmbeddingResponse
}
func (eb *ByIndex) Len() int { return len(eb.resp.Data) }
func (eb *ByIndex) Swap(i, j int) {
eb.resp.Data[i], eb.resp.Data[j] = eb.resp.Data[j], eb.resp.Data[i]
}
func (eb *ByIndex) Less(i, j int) bool { return eb.resp.Data[i].Index < eb.resp.Data[j].Index }
type ErrorInfo struct {
Code string `json:"code"`
Message string `json:"message"`
Param string `json:"param,omitempty"`
Type string `json:"type"`
}
type EmbedddingError struct {
Error ErrorInfo `json:"error"`
}
type OpenAIEmbeddingInterface interface {
Check() error
Embedding(modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error)
}
type openAIBase struct {
apiKey string
url string
}
func (c *openAIBase) Check() error {
if c.apiKey == "" {
return fmt.Errorf("api key is empty")
}
if c.url == "" {
return fmt.Errorf("url is empty")
}
return nil
}
func (c *openAIBase) genReq(modelName string, texts []string, dim int, user string) *EmbeddingRequest {
var r EmbeddingRequest
r.Model = modelName
r.Input = texts
r.EncodingFormat = "float"
if user != "" {
r.User = user
}
if dim != 0 {
r.Dimensions = dim
}
return &r
}
func (c *openAIBase) embedding(url string, headers map[string]string, modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error) {
r := c.genReq(modelName, texts, dim, user)
data, err := json.Marshal(r)
if err != nil {
return nil, err
}
if timeoutSec <= 0 {
timeoutSec = utils.DefaultTimeout
}
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(timeoutSec)*time.Second)
defer cancel()
req, err := http.NewRequestWithContext(ctx, http.MethodPost, url, bytes.NewBuffer(data))
if err != nil {
return nil, err
}
for key, value := range headers {
req.Header.Set(key, value)
}
body, err := utils.RetrySend(req, 3)
if err != nil {
return nil, err
}
var res EmbeddingResponse
err = json.Unmarshal(body, &res)
if err != nil {
return nil, err
}
sort.Sort(&ByIndex{&res})
return &res, err
}
type OpenAIEmbeddingClient struct {
openAIBase
}
func NewOpenAIEmbeddingClient(apiKey string, url string) *OpenAIEmbeddingClient {
return &OpenAIEmbeddingClient{
openAIBase{
apiKey: apiKey,
url: url,
},
}
}
func (c *OpenAIEmbeddingClient) Embedding(modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error) {
headers := map[string]string{
"Content-Type": "application/json",
"Authorization": fmt.Sprintf("Bearer %s", c.apiKey),
}
return c.embedding(c.url, headers, modelName, texts, dim, user, timeoutSec)
}
type AzureOpenAIEmbeddingClient struct {
openAIBase
apiVersion string
}
func NewAzureOpenAIEmbeddingClient(apiKey string, url string) *AzureOpenAIEmbeddingClient {
return &AzureOpenAIEmbeddingClient{
openAIBase: openAIBase{
apiKey: apiKey,
url: url,
},
apiVersion: "2024-06-01",
}
}
func (c *AzureOpenAIEmbeddingClient) Embedding(modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error) {
base, err := url.Parse(c.url)
if err != nil {
return nil, err
}
path := fmt.Sprintf("/openai/deployments/%s/embeddings", modelName)
base.Path = path
params := url.Values{}
params.Add("api-version", c.apiVersion)
base.RawQuery = params.Encode()
url := base.String()
headers := map[string]string{
"Content-Type": "application/json",
"api-key": c.apiKey,
}
return c.embedding(url, headers, modelName, texts, dim, user, timeoutSec)
}