mirror of https://github.com/milvus-io/milvus.git
226 lines
5.9 KiB
Go
226 lines
5.9 KiB
Go
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package openai
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/json"
|
|
"fmt"
|
|
"net/http"
|
|
"net/url"
|
|
"sort"
|
|
"time"
|
|
|
|
"github.com/milvus-io/milvus/internal/util/function/models/utils"
|
|
)
|
|
|
|
type EmbeddingRequest struct {
|
|
// ID of the model to use.
|
|
Model string `json:"model"`
|
|
|
|
// Input text to embed, encoded as a string.
|
|
Input []string `json:"input"`
|
|
|
|
// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
|
|
User string `json:"user,omitempty"`
|
|
|
|
// The format to return the embeddings in. Can be either float or base64.
|
|
EncodingFormat string `json:"encoding_format,omitempty"`
|
|
|
|
// The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
|
|
Dimensions int `json:"dimensions,omitempty"`
|
|
}
|
|
|
|
type Usage struct {
|
|
// The number of tokens used by the prompt.
|
|
PromptTokens int `json:"prompt_tokens"`
|
|
|
|
// The total number of tokens used by the request.
|
|
TotalTokens int `json:"total_tokens"`
|
|
}
|
|
|
|
type EmbeddingData struct {
|
|
// The object type, which is always "embedding".
|
|
Object string `json:"object"`
|
|
|
|
// The embedding vector, which is a list of floats.
|
|
Embedding []float32 `json:"embedding"`
|
|
|
|
// The index of the embedding in the list of embeddings.
|
|
Index int `json:"index"`
|
|
}
|
|
|
|
type EmbeddingResponse struct {
|
|
// The object type, which is always "list".
|
|
Object string `json:"object"`
|
|
|
|
// The list of embeddings generated by the model.
|
|
Data []EmbeddingData `json:"data"`
|
|
|
|
// The name of the model used to generate the embedding.
|
|
Model string `json:"model"`
|
|
|
|
// The usage information for the request.
|
|
Usage Usage `json:"usage"`
|
|
}
|
|
|
|
type ByIndex struct {
|
|
resp *EmbeddingResponse
|
|
}
|
|
|
|
func (eb *ByIndex) Len() int { return len(eb.resp.Data) }
|
|
func (eb *ByIndex) Swap(i, j int) {
|
|
eb.resp.Data[i], eb.resp.Data[j] = eb.resp.Data[j], eb.resp.Data[i]
|
|
}
|
|
func (eb *ByIndex) Less(i, j int) bool { return eb.resp.Data[i].Index < eb.resp.Data[j].Index }
|
|
|
|
type ErrorInfo struct {
|
|
Code string `json:"code"`
|
|
Message string `json:"message"`
|
|
Param string `json:"param,omitempty"`
|
|
Type string `json:"type"`
|
|
}
|
|
|
|
type EmbedddingError struct {
|
|
Error ErrorInfo `json:"error"`
|
|
}
|
|
|
|
type OpenAIEmbeddingInterface interface {
|
|
Check() error
|
|
Embedding(modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error)
|
|
}
|
|
|
|
type openAIBase struct {
|
|
apiKey string
|
|
url string
|
|
}
|
|
|
|
func (c *openAIBase) Check() error {
|
|
if c.apiKey == "" {
|
|
return fmt.Errorf("api key is empty")
|
|
}
|
|
|
|
if c.url == "" {
|
|
return fmt.Errorf("url is empty")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (c *openAIBase) genReq(modelName string, texts []string, dim int, user string) *EmbeddingRequest {
|
|
var r EmbeddingRequest
|
|
r.Model = modelName
|
|
r.Input = texts
|
|
r.EncodingFormat = "float"
|
|
if user != "" {
|
|
r.User = user
|
|
}
|
|
if dim != 0 {
|
|
r.Dimensions = dim
|
|
}
|
|
return &r
|
|
}
|
|
|
|
func (c *openAIBase) embedding(url string, headers map[string]string, modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error) {
|
|
r := c.genReq(modelName, texts, dim, user)
|
|
data, err := json.Marshal(r)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if timeoutSec <= 0 {
|
|
timeoutSec = utils.DefaultTimeout
|
|
}
|
|
|
|
ctx, cancel := context.WithTimeout(context.Background(), time.Duration(timeoutSec)*time.Second)
|
|
defer cancel()
|
|
req, err := http.NewRequestWithContext(ctx, http.MethodPost, url, bytes.NewBuffer(data))
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
for key, value := range headers {
|
|
req.Header.Set(key, value)
|
|
}
|
|
body, err := utils.RetrySend(req, 3)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var res EmbeddingResponse
|
|
err = json.Unmarshal(body, &res)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
sort.Sort(&ByIndex{&res})
|
|
return &res, err
|
|
}
|
|
|
|
type OpenAIEmbeddingClient struct {
|
|
openAIBase
|
|
}
|
|
|
|
func NewOpenAIEmbeddingClient(apiKey string, url string) *OpenAIEmbeddingClient {
|
|
return &OpenAIEmbeddingClient{
|
|
openAIBase{
|
|
apiKey: apiKey,
|
|
url: url,
|
|
},
|
|
}
|
|
}
|
|
|
|
func (c *OpenAIEmbeddingClient) Embedding(modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error) {
|
|
headers := map[string]string{
|
|
"Content-Type": "application/json",
|
|
"Authorization": fmt.Sprintf("Bearer %s", c.apiKey),
|
|
}
|
|
return c.embedding(c.url, headers, modelName, texts, dim, user, timeoutSec)
|
|
}
|
|
|
|
type AzureOpenAIEmbeddingClient struct {
|
|
openAIBase
|
|
apiVersion string
|
|
}
|
|
|
|
func NewAzureOpenAIEmbeddingClient(apiKey string, url string) *AzureOpenAIEmbeddingClient {
|
|
return &AzureOpenAIEmbeddingClient{
|
|
openAIBase: openAIBase{
|
|
apiKey: apiKey,
|
|
url: url,
|
|
},
|
|
apiVersion: "2024-06-01",
|
|
}
|
|
}
|
|
|
|
func (c *AzureOpenAIEmbeddingClient) Embedding(modelName string, texts []string, dim int, user string, timeoutSec int64) (*EmbeddingResponse, error) {
|
|
base, err := url.Parse(c.url)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
path := fmt.Sprintf("/openai/deployments/%s/embeddings", modelName)
|
|
base.Path = path
|
|
params := url.Values{}
|
|
params.Add("api-version", c.apiVersion)
|
|
base.RawQuery = params.Encode()
|
|
url := base.String()
|
|
|
|
headers := map[string]string{
|
|
"Content-Type": "application/json",
|
|
"api-key": c.apiKey,
|
|
}
|
|
return c.embedding(url, headers, modelName, texts, dim, user, timeoutSec)
|
|
}
|