mirror of https://github.com/milvus-io/milvus.git
168 lines
4.8 KiB
Go
168 lines
4.8 KiB
Go
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package pipeline
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"go.uber.org/zap"
|
|
|
|
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
|
|
"github.com/milvus-io/milvus/internal/flushcommon/writebuffer"
|
|
"github.com/milvus-io/milvus/internal/storage"
|
|
"github.com/milvus-io/milvus/internal/util/function"
|
|
"github.com/milvus-io/milvus/pkg/v2/log"
|
|
"github.com/milvus-io/milvus/pkg/v2/util/paramtable"
|
|
)
|
|
|
|
// TODO support set EmbddingType
|
|
// type EmbeddingType int32
|
|
|
|
type embeddingNode struct {
|
|
BaseNode
|
|
|
|
schema *schemapb.CollectionSchema
|
|
pkField *schemapb.FieldSchema
|
|
channelName string
|
|
|
|
// embeddingType EmbeddingType
|
|
functionRunners map[int64]function.FunctionRunner
|
|
}
|
|
|
|
func newEmbeddingNode(channelName string, schema *schemapb.CollectionSchema) (*embeddingNode, error) {
|
|
baseNode := BaseNode{}
|
|
baseNode.SetMaxQueueLength(paramtable.Get().DataNodeCfg.FlowGraphMaxQueueLength.GetAsInt32())
|
|
baseNode.SetMaxParallelism(paramtable.Get().DataNodeCfg.FlowGraphMaxParallelism.GetAsInt32())
|
|
|
|
node := &embeddingNode{
|
|
BaseNode: baseNode,
|
|
channelName: channelName,
|
|
schema: schema,
|
|
functionRunners: make(map[int64]function.FunctionRunner),
|
|
}
|
|
|
|
for _, field := range schema.GetFields() {
|
|
if field.GetIsPrimaryKey() {
|
|
node.pkField = field
|
|
break
|
|
}
|
|
}
|
|
|
|
for _, tf := range schema.GetFunctions() {
|
|
functionRunner, err := function.NewFunctionRunner(schema, tf)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if functionRunner == nil {
|
|
continue
|
|
}
|
|
node.functionRunners[tf.GetId()] = functionRunner
|
|
}
|
|
return node, nil
|
|
}
|
|
|
|
func (eNode *embeddingNode) Name() string {
|
|
return fmt.Sprintf("embeddingNode-%s", eNode.channelName)
|
|
}
|
|
|
|
func (eNode *embeddingNode) bm25Embedding(runner function.FunctionRunner, inputFieldId, outputFieldId int64, data *storage.InsertData, meta map[int64]*storage.BM25Stats) error {
|
|
if _, ok := meta[outputFieldId]; !ok {
|
|
meta[outputFieldId] = storage.NewBM25Stats()
|
|
}
|
|
|
|
embeddingData, ok := data.Data[inputFieldId].GetDataRows().([]string)
|
|
if !ok {
|
|
return fmt.Errorf("BM25 embedding failed: input field data not varchar/text")
|
|
}
|
|
|
|
output, err := runner.BatchRun(embeddingData)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
sparseArray, ok := output[0].(*schemapb.SparseFloatArray)
|
|
if !ok {
|
|
return fmt.Errorf("BM25 embedding failed: BM25 runner output not sparse map")
|
|
}
|
|
|
|
meta[outputFieldId].AppendBytes(sparseArray.GetContents()...)
|
|
data.Data[outputFieldId] = BuildSparseFieldData(sparseArray)
|
|
return nil
|
|
}
|
|
|
|
func (eNode *embeddingNode) embedding(datas []*storage.InsertData) (map[int64]*storage.BM25Stats, error) {
|
|
meta := make(map[int64]*storage.BM25Stats)
|
|
for _, data := range datas {
|
|
for _, functionRunner := range eNode.functionRunners {
|
|
functionSchema := functionRunner.GetSchema()
|
|
switch functionSchema.GetType() {
|
|
case schemapb.FunctionType_BM25:
|
|
err := eNode.bm25Embedding(functionRunner, functionSchema.GetInputFieldIds()[0], functionSchema.GetOutputFieldIds()[0], data, meta)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
default:
|
|
return nil, fmt.Errorf("unknown function type %s", functionSchema.Type)
|
|
}
|
|
}
|
|
}
|
|
return meta, nil
|
|
}
|
|
|
|
func (eNode *embeddingNode) Embedding(datas []*writebuffer.InsertData) error {
|
|
for _, data := range datas {
|
|
stats, err := eNode.embedding(data.GetDatas())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
data.SetBM25Stats(stats)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (eNode *embeddingNode) Operate(in []Msg) []Msg {
|
|
fgMsg := in[0].(*FlowGraphMsg)
|
|
|
|
if fgMsg.IsCloseMsg() {
|
|
return []Msg{fgMsg}
|
|
}
|
|
|
|
insertData, err := writebuffer.PrepareInsert(eNode.schema, eNode.pkField, fgMsg.InsertMessages)
|
|
if err != nil {
|
|
log.Error("failed to prepare insert data", zap.Error(err))
|
|
panic(err)
|
|
}
|
|
|
|
err = eNode.Embedding(insertData)
|
|
if err != nil {
|
|
log.Warn("failed to embedding insert data", zap.Error(err))
|
|
panic(err)
|
|
}
|
|
|
|
fgMsg.InsertData = insertData
|
|
return []Msg{fgMsg}
|
|
}
|
|
|
|
func BuildSparseFieldData(array *schemapb.SparseFloatArray) storage.FieldData {
|
|
return &storage.SparseFloatVectorFieldData{
|
|
SparseFloatArray: schemapb.SparseFloatArray{
|
|
Contents: array.GetContents(),
|
|
Dim: array.GetDim(),
|
|
},
|
|
}
|
|
}
|