A cloud-native vector database, storage for next generation AI applications
 
 
 
 
 
 
Go to file
jinhai ea700add1a Add faiss-1.5.1
Former-commit-id: 50233b53b5b48edc305a8f58f3f1425025d2fc09
2019-04-14 10:54:53 +08:00
cpp Update Unit test samples 2019-04-14 10:25:49 +08:00
install support base dockerfile and update readme 2019-04-03 16:10:52 +08:00
pyengine Update vector engine 2019-04-10 21:06:48 +08:00
.dockerignore support base dockerfile and update readme 2019-04-03 16:10:52 +08:00
.gitignore Update .gitignore 2019-04-14 10:24:34 +08:00
Dockerfile support base dockerfile and update readme 2019-04-03 16:10:52 +08:00
README.md Update README.md 2019-04-03 16:14:12 +08:00
environment.yaml support base dockerfile and update readme 2019-04-03 16:10:52 +08:00
requirements.txt Add requirements.txt 2019-03-25 19:40:42 +08:00

README.md

Vecwise Engine Dev Guide

Install via Conda

  1. Install Miniconda first

    • bash vecwise_engine/install/miniconda.sh
  2. Create environment

    • conda env create -f vecwise_engine/environment.yaml
  3. Test your installation

Install via Docker

  1. Install nvidia-docker

  2. docker build -t cuda9.0/VecEngine .

  3. docker run -it cuda9.0/VecEngine bash

Create Database

  1. Install MySQL

    • sudo apt-get update
    • sudo apt-get install mariadb-server
  2. Create user and database:

    • create user vecwise;
    • create database vecdata;
    • grant all privileges on vecdata.* to 'vecwise'@'%';
    • flush privileges;
  3. Create table:

    • cd vecwise_engine/pyengine && python manager.py create_all