mirror of https://github.com/milvus-io/milvus.git
3339 lines
154 KiB
Python
3339 lines
154 KiB
Python
import os
|
||
import random
|
||
import math
|
||
import string
|
||
import json
|
||
import time
|
||
import uuid
|
||
from functools import singledispatch
|
||
import numpy as np
|
||
import pandas as pd
|
||
from ml_dtypes import bfloat16
|
||
from sklearn import preprocessing
|
||
from npy_append_array import NpyAppendArray
|
||
from faker import Faker
|
||
from pathlib import Path
|
||
from minio import Minio
|
||
from base.schema_wrapper import ApiCollectionSchemaWrapper, ApiFieldSchemaWrapper
|
||
from common import common_type as ct
|
||
from common.common_params import ExprCheckParams
|
||
from utils.util_log import test_log as log
|
||
from customize.milvus_operator import MilvusOperator
|
||
import pickle
|
||
from collections import Counter
|
||
import bm25s
|
||
import jieba
|
||
import re
|
||
|
||
from pymilvus import CollectionSchema, DataType, FunctionType, Function
|
||
|
||
from bm25s.tokenization import Tokenizer
|
||
|
||
fake = Faker()
|
||
|
||
|
||
from common.common_params import Expr
|
||
"""" Methods of processing data """
|
||
|
||
|
||
try:
|
||
RNG = np.random.default_rng(seed=0)
|
||
except ValueError as e:
|
||
RNG = None
|
||
|
||
|
||
@singledispatch
|
||
def to_serializable(val):
|
||
"""Used by default."""
|
||
return str(val)
|
||
|
||
|
||
@to_serializable.register(np.float32)
|
||
def ts_float32(val):
|
||
"""Used if *val* is an instance of numpy.float32."""
|
||
return np.float64(val)
|
||
|
||
|
||
class ParamInfo:
|
||
def __init__(self):
|
||
self.param_host = ""
|
||
self.param_port = ""
|
||
self.param_handler = ""
|
||
self.param_user = ""
|
||
self.param_password = ""
|
||
self.param_secure = False
|
||
self.param_replica_num = ct.default_replica_num
|
||
self.param_uri = ""
|
||
self.param_token = ""
|
||
|
||
def prepare_param_info(self, host, port, handler, replica_num, user, password, secure, uri, token):
|
||
self.param_host = host
|
||
self.param_port = port
|
||
self.param_handler = handler
|
||
self.param_user = user
|
||
self.param_password = password
|
||
self.param_secure = secure
|
||
self.param_replica_num = replica_num
|
||
self.param_uri = uri
|
||
self.param_token = token
|
||
|
||
|
||
param_info = ParamInfo()
|
||
|
||
en_vocabularies_distribution = {
|
||
"hello": 0.01,
|
||
"milvus": 0.01,
|
||
"vector": 0.01,
|
||
"database": 0.01
|
||
}
|
||
|
||
zh_vocabularies_distribution = {
|
||
"你好": 0.01,
|
||
"向量": 0.01,
|
||
"数据": 0.01,
|
||
"库": 0.01
|
||
}
|
||
|
||
def patch_faker_text(fake_instance, vocabularies_distribution):
|
||
"""
|
||
Monkey patch the text() method of a Faker instance to include custom vocabulary.
|
||
Each word in vocabularies_distribution has an independent chance to be inserted.
|
||
|
||
Args:
|
||
fake_instance: Faker instance to patch
|
||
vocabularies_distribution: Dictionary where:
|
||
- key: word to insert
|
||
- value: probability (0-1) of inserting this word into each sentence
|
||
|
||
Example:
|
||
vocabularies_distribution = {
|
||
"hello": 0.1, # 10% chance to insert "hello" in each sentence
|
||
"milvus": 0.1, # 10% chance to insert "milvus" in each sentence
|
||
}
|
||
"""
|
||
original_text = fake_instance.text
|
||
|
||
def new_text(nb_sentences=100, *args, **kwargs):
|
||
sentences = []
|
||
# Split original text into sentences
|
||
original_sentences = original_text(nb_sentences).split('.')
|
||
original_sentences = [s.strip() for s in original_sentences if s.strip()]
|
||
|
||
for base_sentence in original_sentences:
|
||
words = base_sentence.split()
|
||
|
||
# Independently decide whether to insert each word
|
||
for word, probability in vocabularies_distribution.items():
|
||
if random.random() < probability:
|
||
# Choose random position to insert the word
|
||
insert_pos = random.randint(0, len(words))
|
||
words.insert(insert_pos, word)
|
||
|
||
# Reconstruct the sentence
|
||
base_sentence = ' '.join(words)
|
||
|
||
# Ensure proper capitalization
|
||
base_sentence = base_sentence[0].upper() + base_sentence[1:]
|
||
sentences.append(base_sentence)
|
||
|
||
return '. '.join(sentences) + '.'
|
||
|
||
|
||
|
||
# Replace the original text method with our custom one
|
||
fake_instance.text = new_text
|
||
|
||
|
||
|
||
|
||
|
||
def get_bm25_ground_truth(corpus, queries, top_k=100, language="en"):
|
||
"""
|
||
Get the ground truth for BM25 search.
|
||
:param corpus: The corpus of documents
|
||
:param queries: The query string or list of query strings
|
||
:return: The ground truth for BM25 search
|
||
"""
|
||
|
||
def remove_punctuation(text):
|
||
text = text.strip()
|
||
text = text.replace("\n", " ")
|
||
return re.sub(r'[^\w\s]', ' ', text)
|
||
|
||
# Tokenize the corpus
|
||
def jieba_split(text):
|
||
text_without_punctuation = remove_punctuation(text)
|
||
return jieba.lcut(text_without_punctuation)
|
||
|
||
stopwords = "english" if language in ["en", "english"] else [" "]
|
||
stemmer = None
|
||
if language in ["zh", "cn", "chinese"]:
|
||
splitter = jieba_split
|
||
tokenizer = Tokenizer(
|
||
stemmer=stemmer, splitter=splitter, stopwords=stopwords
|
||
)
|
||
else:
|
||
tokenizer = Tokenizer(
|
||
stemmer=stemmer, stopwords=stopwords
|
||
)
|
||
corpus_tokens = tokenizer.tokenize(corpus, return_as="tuple")
|
||
retriever = bm25s.BM25()
|
||
retriever.index(corpus_tokens)
|
||
query_tokens = tokenizer.tokenize(queries,return_as="tuple")
|
||
results, scores = retriever.retrieve(query_tokens, corpus=corpus, k=top_k)
|
||
return results, scores
|
||
|
||
|
||
def custom_tokenizer(language="en"):
|
||
def remove_punctuation(text):
|
||
text = text.strip()
|
||
text = text.replace("\n", " ")
|
||
return re.sub(r'[^\w\s]', ' ', text)
|
||
|
||
# Tokenize the corpus
|
||
def jieba_split(text):
|
||
text_without_punctuation = remove_punctuation(text)
|
||
return jieba.cut_for_search(text_without_punctuation)
|
||
|
||
def blank_space_split(text):
|
||
text_without_punctuation = remove_punctuation(text)
|
||
return text_without_punctuation.split()
|
||
|
||
stopwords = [" "]
|
||
stemmer = None
|
||
if language in ["zh", "cn", "chinese"]:
|
||
splitter = jieba_split
|
||
tokenizer = Tokenizer(
|
||
stemmer=stemmer, splitter=splitter, stopwords=stopwords
|
||
)
|
||
else:
|
||
splitter = blank_space_split
|
||
tokenizer = Tokenizer(
|
||
stemmer=stemmer, splitter= splitter, stopwords=stopwords
|
||
)
|
||
return tokenizer
|
||
|
||
def manual_check_text_match(df, word, col):
|
||
id_list = []
|
||
for i in range(len(df)):
|
||
row = df.iloc[i]
|
||
# log.info(f"word :{word}, row: {row[col]}")
|
||
if word in row[col]:
|
||
id_list.append(row["id"])
|
||
return id_list
|
||
|
||
|
||
def get_top_english_tokens(counter, n=10):
|
||
english_pattern = re.compile(r'^[a-zA-Z]+$')
|
||
|
||
english_tokens = {
|
||
word: freq
|
||
for word, freq in counter.items()
|
||
if english_pattern.match(str(word))
|
||
}
|
||
english_counter = Counter(english_tokens)
|
||
return english_counter.most_common(n)
|
||
|
||
def analyze_documents(texts, language="en"):
|
||
|
||
tokenizer = custom_tokenizer(language)
|
||
new_texts = []
|
||
for text in texts:
|
||
if isinstance(text, str):
|
||
new_texts.append(text)
|
||
# Tokenize the corpus
|
||
tokenized = tokenizer.tokenize(new_texts, return_as="tuple", show_progress=False)
|
||
# log.info(f"Tokenized: {tokenized}")
|
||
# Create a frequency counter
|
||
freq = Counter()
|
||
|
||
# Count the frequency of each token
|
||
for doc_ids in tokenized.ids:
|
||
freq.update(doc_ids)
|
||
# Create a reverse vocabulary mapping
|
||
id_to_word = {id: word for word, id in tokenized.vocab.items()}
|
||
|
||
# Convert token ids back to words
|
||
word_freq = Counter({id_to_word[token_id]: count for token_id, count in freq.items()})
|
||
|
||
|
||
# if language in ["zh", "cn", "chinese"], remove the long words
|
||
# this is a trick to make the text match test case verification simple, because the long word can be still split
|
||
if language in ["zh", "cn", "chinese"]:
|
||
word_freq = Counter({word: count for word, count in word_freq.items() if 1< len(word) <= 3})
|
||
log.info(f"word freq {word_freq.most_common(10)}")
|
||
return word_freq
|
||
|
||
|
||
def check_token_overlap(text_a, text_b, language="en"):
|
||
word_freq_a = analyze_documents([text_a], language)
|
||
word_freq_b = analyze_documents([text_b], language)
|
||
overlap = set(word_freq_a.keys()).intersection(set(word_freq_b.keys()))
|
||
return overlap, word_freq_a, word_freq_b
|
||
|
||
|
||
def split_dataframes(df, fields, language="en"):
|
||
df_copy = df.copy()
|
||
for col in fields:
|
||
tokenizer = custom_tokenizer(language)
|
||
texts = df[col].to_list()
|
||
tokenized = tokenizer.tokenize(texts, return_as="tuple")
|
||
new_texts = []
|
||
id_vocab_map = {id: word for word, id in tokenized.vocab.items()}
|
||
for doc_ids in tokenized.ids:
|
||
new_texts.append([id_vocab_map[token_id] for token_id in doc_ids])
|
||
df_copy[col] = new_texts
|
||
return df_copy
|
||
|
||
|
||
def generate_pandas_text_match_result(expr, df):
|
||
def manual_check(expr):
|
||
if "not" in expr:
|
||
key = expr["not"]["field"]
|
||
value = expr["not"]["value"]
|
||
return lambda row: value not in row[key]
|
||
key = expr["field"]
|
||
value = expr["value"]
|
||
return lambda row: value in row[key]
|
||
if "not" in expr:
|
||
key = expr["not"]["field"]
|
||
else:
|
||
key = expr["field"]
|
||
manual_result = df[df.apply(manual_check(expr), axis=1)]
|
||
log.info(f"pandas filter result {len(manual_result)}\n{manual_result[key]}")
|
||
return manual_result
|
||
|
||
|
||
def generate_text_match_expr(query_dict):
|
||
"""
|
||
Generate a TextMatch expression with multiple logical operators and field names.
|
||
:param query_dict: A dictionary representing the query structure
|
||
:return: A string representing the TextMatch expression
|
||
"""
|
||
|
||
def process_node(node):
|
||
if isinstance(node, dict) and 'field' in node and 'value' in node:
|
||
return f"TEXT_MATCH({node['field']}, '{node['value']}')"
|
||
elif isinstance(node, dict) and 'not' in node:
|
||
return f"not {process_node(node['not'])}"
|
||
elif isinstance(node, list):
|
||
return ' '.join(process_node(item) for item in node)
|
||
elif isinstance(node, str):
|
||
return node
|
||
else:
|
||
raise ValueError(f"Invalid node type: {type(node)}")
|
||
|
||
return f"({process_node(query_dict)})"
|
||
|
||
|
||
def generate_pandas_query_string(query):
|
||
def process_node(node):
|
||
if isinstance(node, dict):
|
||
if 'field' in node and 'value' in node:
|
||
return f"('{node['value']}' in row['{node['field']}'])"
|
||
elif 'not' in node:
|
||
return f"not {process_node(node['not'])}"
|
||
elif isinstance(node, str):
|
||
return node
|
||
else:
|
||
raise ValueError(f"Invalid node type: {type(node)}")
|
||
|
||
parts = [process_node(item) for item in query]
|
||
expression = ' '.join(parts).replace('and', 'and').replace('or', 'or')
|
||
log.info(f"Generated pandas query: {expression}")
|
||
return lambda row: eval(expression)
|
||
|
||
|
||
def evaluate_expression(step_by_step_results):
|
||
# merge result of different steps to final result
|
||
def apply_operator(operators, operands):
|
||
operator = operators.pop()
|
||
right = operands.pop()
|
||
left = operands.pop()
|
||
if operator == "and":
|
||
operands.append(left.intersection(right))
|
||
elif operator == "or":
|
||
operands.append(left.union(right))
|
||
|
||
operators = []
|
||
operands = []
|
||
|
||
for item in step_by_step_results:
|
||
if isinstance(item, list):
|
||
operands.append(set(item))
|
||
elif item in ("and", "or"):
|
||
while operators and operators[-1] == "and" and item == "or":
|
||
apply_operator(operators, operands)
|
||
operators.append(item)
|
||
while operators:
|
||
apply_operator(operators, operands)
|
||
|
||
return operands[0] if operands else set()
|
||
|
||
|
||
def generate_random_query_from_freq_dict(freq_dict, min_freq=1, max_terms=3, p_not=0.2):
|
||
"""
|
||
Generate a random query expression from a dictionary of field frequencies.
|
||
:param freq_dict: A dictionary where keys are field names and values are word frequency dictionaries
|
||
:param min_freq: Minimum frequency for a word to be included in the query (default: 1)
|
||
:param max_terms: Maximum number of terms in the query (default: 3)
|
||
:param p_not: Probability of using NOT for any term (default: 0.2)
|
||
:return: A tuple of (query list, query expression string)
|
||
example:
|
||
freq_dict = {
|
||
"title": {"The": 3, "Lord": 2, "Rings": 2, "Harry": 1, "Potter": 1},
|
||
"author": {"Tolkien": 2, "Rowling": 1, "Orwell": 1},
|
||
"description": {"adventure": 4, "fantasy": 3, "magic": 1, "dystopian": 2}
|
||
}
|
||
print("Random queries from frequency dictionary:")
|
||
for _ in range(5):
|
||
query_list, expr = generate_random_query_from_freq_dict(freq_dict, min_freq=1, max_terms=4, p_not=0.2)
|
||
print(f"Query: {query_list}")
|
||
print(f"Expression: {expr}")
|
||
print()
|
||
"""
|
||
|
||
def random_term(field, words):
|
||
term = {"field": field, "value": random.choice(words)}
|
||
if random.random() < p_not:
|
||
return {"not": term}
|
||
return term
|
||
|
||
# Filter words based on min_freq
|
||
filtered_dict = {
|
||
field: [word for word, freq in words.items() if freq >= min_freq]
|
||
for field, words in freq_dict.items()
|
||
}
|
||
|
||
# Remove empty fields
|
||
filtered_dict = {k: v for k, v in filtered_dict.items() if v}
|
||
|
||
if not filtered_dict:
|
||
return [], ""
|
||
|
||
# Randomly select fields and terms
|
||
query = []
|
||
for _ in range(min(max_terms, sum(len(words) for words in filtered_dict.values()))):
|
||
if not filtered_dict:
|
||
break
|
||
field = random.choice(list(filtered_dict.keys()))
|
||
if filtered_dict[field]:
|
||
term = random_term(field, filtered_dict[field])
|
||
query.append(term)
|
||
# Insert random AND/OR between terms
|
||
if query and _ < max_terms - 1:
|
||
query.append(random.choice(["and", "or"]))
|
||
# Remove the used word to avoid repetition
|
||
used_word = term['value'] if isinstance(term, dict) and 'value' in term else term['not']['value']
|
||
filtered_dict[field].remove(used_word)
|
||
if not filtered_dict[field]:
|
||
del filtered_dict[field]
|
||
return query, generate_text_match_expr(query), generate_pandas_query_string(query)
|
||
|
||
|
||
def generate_array_dataset(size, array_length, hit_probabilities, target_values):
|
||
dataset = []
|
||
target_array_length = target_values.get('array_length_field', None)
|
||
target_array_access = target_values.get('array_access', None)
|
||
all_target_values = set(
|
||
val for sublist in target_values.values() for val in (sublist if isinstance(sublist, list) else [sublist]))
|
||
for i in range(size):
|
||
entry = {"id": i}
|
||
|
||
# Generate random arrays for each condition
|
||
for condition in hit_probabilities.keys():
|
||
available_values = [val for val in range(1, 100) if val not in all_target_values]
|
||
array = random.sample(available_values, array_length)
|
||
|
||
# Ensure the array meets the condition based on its probability
|
||
if random.random() < hit_probabilities[condition]:
|
||
if condition == 'contains':
|
||
if target_values[condition] not in array:
|
||
array[random.randint(0, array_length - 1)] = target_values[condition]
|
||
elif condition == 'contains_any':
|
||
if not any(val in array for val in target_values[condition]):
|
||
array[random.randint(0, array_length - 1)] = random.choice(target_values[condition])
|
||
elif condition == 'contains_all':
|
||
indices = random.sample(range(array_length), len(target_values[condition]))
|
||
for idx, val in zip(indices, target_values[condition]):
|
||
array[idx] = val
|
||
elif condition == 'equals':
|
||
array = target_values[condition][:]
|
||
elif condition == 'array_length_field':
|
||
array = [random.randint(0, 10) for _ in range(target_array_length)]
|
||
elif condition == 'array_access':
|
||
array = [random.randint(0, 10) for _ in range(random.randint(10, 20))]
|
||
array[target_array_access[0]] = target_array_access[1]
|
||
else:
|
||
raise ValueError(f"Unknown condition: {condition}")
|
||
|
||
entry[condition] = array
|
||
|
||
dataset.append(entry)
|
||
|
||
return dataset
|
||
|
||
|
||
def prepare_array_test_data(data_size, hit_rate=0.005, dim=128):
|
||
size = data_size # Number of arrays in the dataset
|
||
array_length = 10 # Length of each array
|
||
|
||
# Probabilities that an array hits the target condition
|
||
hit_probabilities = {
|
||
'contains': hit_rate,
|
||
'contains_any': hit_rate,
|
||
'contains_all': hit_rate,
|
||
'equals': hit_rate,
|
||
'array_length_field': hit_rate,
|
||
'array_access': hit_rate
|
||
}
|
||
|
||
# Target values for each condition
|
||
target_values = {
|
||
'contains': 42,
|
||
'contains_any': [21, 37, 42],
|
||
'contains_all': [15, 30],
|
||
'equals': [1,2,3,4,5],
|
||
'array_length_field': 5, # array length == 5
|
||
'array_access': [0, 5] # index=0, and value == 5
|
||
}
|
||
|
||
# Generate dataset
|
||
dataset = generate_array_dataset(size, array_length, hit_probabilities, target_values)
|
||
data = {
|
||
"id": pd.Series([x["id"] for x in dataset]),
|
||
"contains": pd.Series([x["contains"] for x in dataset]),
|
||
"contains_any": pd.Series([x["contains_any"] for x in dataset]),
|
||
"contains_all": pd.Series([x["contains_all"] for x in dataset]),
|
||
"equals": pd.Series([x["equals"] for x in dataset]),
|
||
"array_length_field": pd.Series([x["array_length_field"] for x in dataset]),
|
||
"array_access": pd.Series([x["array_access"] for x in dataset]),
|
||
"emb": pd.Series([np.array([random.random() for j in range(dim)], dtype=np.dtype("float32")) for _ in
|
||
range(size)])
|
||
}
|
||
# Define testing conditions
|
||
contains_value = target_values['contains']
|
||
contains_any_values = target_values['contains_any']
|
||
contains_all_values = target_values['contains_all']
|
||
equals_array = target_values['equals']
|
||
|
||
# Perform tests
|
||
contains_result = [d for d in dataset if contains_value in d["contains"]]
|
||
contains_any_result = [d for d in dataset if any(val in d["contains_any"] for val in contains_any_values)]
|
||
contains_all_result = [d for d in dataset if all(val in d["contains_all"] for val in contains_all_values)]
|
||
equals_result = [d for d in dataset if d["equals"] == equals_array]
|
||
array_length_result = [d for d in dataset if len(d["array_length_field"]) == target_values['array_length_field']]
|
||
array_access_result = [d for d in dataset if d["array_access"][0] == target_values['array_access'][1]]
|
||
# Calculate and log.info proportions
|
||
contains_ratio = len(contains_result) / size
|
||
contains_any_ratio = len(contains_any_result) / size
|
||
contains_all_ratio = len(contains_all_result) / size
|
||
equals_ratio = len(equals_result) / size
|
||
array_length_ratio = len(array_length_result) / size
|
||
array_access_ratio = len(array_access_result) / size
|
||
|
||
log.info(f"\nProportion of arrays that contain the value: {contains_ratio}")
|
||
log.info(f"Proportion of arrays that contain any of the values: {contains_any_ratio}")
|
||
log.info(f"Proportion of arrays that contain all of the values: {contains_all_ratio}")
|
||
log.info(f"Proportion of arrays that equal the target array: {equals_ratio}")
|
||
log.info(f"Proportion of arrays that have the target array length: {array_length_ratio}")
|
||
log.info(f"Proportion of arrays that have the target array access: {array_access_ratio}")
|
||
|
||
|
||
|
||
train_df = pd.DataFrame(data)
|
||
|
||
target_id = {
|
||
"contains": [r["id"] for r in contains_result],
|
||
"contains_any": [r["id"] for r in contains_any_result],
|
||
"contains_all": [r["id"] for r in contains_all_result],
|
||
"equals": [r["id"] for r in equals_result],
|
||
"array_length": [r["id"] for r in array_length_result],
|
||
"array_access": [r["id"] for r in array_access_result]
|
||
}
|
||
target_id_list = [target_id[key] for key in ["contains", "contains_any", "contains_all", "equals", "array_length", "array_access"]]
|
||
|
||
|
||
filters = [
|
||
"array_contains(contains, 42)",
|
||
"array_contains_any(contains_any, [21, 37, 42])",
|
||
"array_contains_all(contains_all, [15, 30])",
|
||
"equals == [1,2,3,4,5]",
|
||
"array_length(array_length_field) == 5",
|
||
"array_access[0] == 5"
|
||
|
||
]
|
||
query_expr = []
|
||
for i in range(len(filters)):
|
||
item = {
|
||
"expr": filters[i],
|
||
"ground_truth": target_id_list[i],
|
||
}
|
||
query_expr.append(item)
|
||
return train_df, query_expr
|
||
|
||
|
||
def gen_unique_str(str_value=None):
|
||
prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8))
|
||
return "test_" + prefix if str_value is None else str_value + "_" + prefix
|
||
|
||
|
||
def gen_str_by_length(length=8, letters_only=False):
|
||
if letters_only:
|
||
return "".join(random.choice(string.ascii_letters) for _ in range(length))
|
||
return "".join(random.choice(string.ascii_letters + string.digits) for _ in range(length))
|
||
|
||
|
||
def generate_random_sentence(language):
|
||
language_map = {
|
||
"English": "en_US",
|
||
"French": "fr_FR",
|
||
"Spanish": "es_ES",
|
||
"German": "de_DE",
|
||
"Italian": "it_IT",
|
||
"Portuguese": "pt_PT",
|
||
"Russian": "ru_RU",
|
||
"Chinese": "zh_CN",
|
||
"Japanese": "ja_JP",
|
||
"Korean": "ko_KR",
|
||
"Arabic": "ar_SA",
|
||
"Hindi": "hi_IN"
|
||
}
|
||
lang_code = language_map.get(language, "en_US")
|
||
faker = Faker(lang_code)
|
||
return faker.sentence()
|
||
|
||
|
||
def gen_digits_by_length(length=8):
|
||
return "".join(random.choice(string.digits) for _ in range(length))
|
||
|
||
|
||
def gen_bool_field(name=ct.default_bool_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
bool_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BOOL, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return bool_field
|
||
|
||
|
||
def gen_string_field(name=ct.default_string_field_name, description=ct.default_desc, is_primary=False,
|
||
max_length=ct.default_length, **kwargs):
|
||
string_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.VARCHAR,
|
||
description=description, max_length=max_length,
|
||
is_primary=is_primary, **kwargs)
|
||
return string_field
|
||
|
||
|
||
def gen_json_field(name=ct.default_json_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
json_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.JSON, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return json_field
|
||
|
||
|
||
def gen_array_field(name=ct.default_array_field_name, element_type=DataType.INT64, max_capacity=ct.default_max_capacity,
|
||
description=ct.default_desc, is_primary=False, **kwargs):
|
||
|
||
array_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.ARRAY,
|
||
element_type=element_type, max_capacity=max_capacity,
|
||
description=description, is_primary=is_primary, **kwargs)
|
||
return array_field
|
||
|
||
|
||
def gen_int8_field(name=ct.default_int8_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int8_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT8, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int8_field
|
||
|
||
|
||
def gen_int16_field(name=ct.default_int16_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int16_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT16, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int16_field
|
||
|
||
|
||
def gen_int32_field(name=ct.default_int32_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int32_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT32, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int32_field
|
||
|
||
|
||
def gen_int64_field(name=ct.default_int64_field_name, description=ct.default_desc, is_primary=False, **kwargs):
|
||
int64_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT64, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return int64_field
|
||
|
||
|
||
def gen_float_field(name=ct.default_float_field_name, is_primary=False, description=ct.default_desc, **kwargs):
|
||
float_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return float_field
|
||
|
||
|
||
def gen_double_field(name=ct.default_double_field_name, is_primary=False, description=ct.default_desc, **kwargs):
|
||
double_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.DOUBLE, description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return double_field
|
||
|
||
|
||
def gen_float_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||
description=ct.default_desc, vector_data_type="FLOAT_VECTOR", **kwargs):
|
||
if vector_data_type == "SPARSE_FLOAT_VECTOR":
|
||
dtype = DataType.SPARSE_FLOAT_VECTOR
|
||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=dtype,
|
||
description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return float_vec_field
|
||
if vector_data_type == "FLOAT_VECTOR":
|
||
dtype = DataType.FLOAT_VECTOR
|
||
elif vector_data_type == "FLOAT16_VECTOR":
|
||
dtype = DataType.FLOAT16_VECTOR
|
||
elif vector_data_type == "BFLOAT16_VECTOR":
|
||
dtype = DataType.BFLOAT16_VECTOR
|
||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=dtype,
|
||
description=description, dim=dim,
|
||
is_primary=is_primary, **kwargs)
|
||
return float_vec_field
|
||
|
||
|
||
def gen_binary_vec_field(name=ct.default_binary_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||
description=ct.default_desc, **kwargs):
|
||
binary_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BINARY_VECTOR,
|
||
description=description, dim=dim,
|
||
is_primary=is_primary, **kwargs)
|
||
return binary_vec_field
|
||
|
||
|
||
def gen_float16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||
description=ct.default_desc, **kwargs):
|
||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT16_VECTOR,
|
||
description=description, dim=dim,
|
||
is_primary=is_primary, **kwargs)
|
||
return float_vec_field
|
||
|
||
|
||
def gen_bfloat16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
|
||
description=ct.default_desc, **kwargs):
|
||
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BFLOAT16_VECTOR,
|
||
description=description, dim=dim,
|
||
is_primary=is_primary, **kwargs)
|
||
return float_vec_field
|
||
|
||
|
||
def gen_sparse_vec_field(name=ct.default_sparse_vec_field_name, is_primary=False, description=ct.default_desc, **kwargs):
|
||
sparse_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.SPARSE_FLOAT_VECTOR,
|
||
description=description,
|
||
is_primary=is_primary, **kwargs)
|
||
return sparse_vec_field
|
||
|
||
|
||
def gen_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=True,
|
||
multiple_dim_array=[], is_partition_key=None, vector_data_type="FLOAT_VECTOR",
|
||
nullable_fields={}, default_value_fields={}, **kwargs):
|
||
# gen primary key field
|
||
if default_value_fields.get(ct.default_int64_field_name) is None:
|
||
int64_field = gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name),
|
||
nullable=(ct.default_int64_field_name in nullable_fields))
|
||
else:
|
||
int64_field = gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name),
|
||
nullable=(ct.default_int64_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_int64_field_name))
|
||
if default_value_fields.get(ct.default_string_field_name) is None:
|
||
string_field = gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name),
|
||
nullable=(ct.default_string_field_name in nullable_fields))
|
||
else:
|
||
string_field = gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name),
|
||
nullable=(ct.default_string_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_string_field_name))
|
||
# gen vector field
|
||
if default_value_fields.get(ct.default_float_vec_field_name) is None:
|
||
float_vector_field = gen_float_vec_field(dim=dim, vector_data_type=vector_data_type,
|
||
nullable=(ct.default_float_vec_field_name in nullable_fields))
|
||
else:
|
||
float_vector_field = gen_float_vec_field(dim=dim, vector_data_type=vector_data_type,
|
||
nullable=(ct.default_float_vec_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(
|
||
ct.default_float_vec_field_name))
|
||
if primary_field is ct.default_int64_field_name:
|
||
fields = [int64_field]
|
||
elif primary_field is ct.default_string_field_name:
|
||
fields = [string_field]
|
||
else:
|
||
log.error("Primary key only support int or varchar")
|
||
assert False
|
||
if enable_dynamic_field:
|
||
fields.append(float_vector_field)
|
||
else:
|
||
if default_value_fields.get(ct.default_float_field_name) is None:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
|
||
else:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_float_field_name))
|
||
if default_value_fields.get(ct.default_json_field_name) is None:
|
||
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields))
|
||
else:
|
||
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_json_field_name))
|
||
fields = [int64_field, float_field, string_field, json_field, float_vector_field]
|
||
if with_json is False:
|
||
fields.remove(json_field)
|
||
|
||
if len(multiple_dim_array) != 0:
|
||
for other_dim in multiple_dim_array:
|
||
fields.append(gen_float_vec_field(gen_unique_str("multiple_vector"), dim=other_dim,
|
||
vector_data_type=vector_data_type))
|
||
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id,
|
||
enable_dynamic_field=enable_dynamic_field, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_all_datatype_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim, enable_dynamic_field=True, **kwargs):
|
||
analyzer_params = {
|
||
"tokenizer": "standard",
|
||
}
|
||
fields = [
|
||
gen_int64_field(),
|
||
gen_float_field(),
|
||
gen_string_field(),
|
||
gen_string_field(name="text", max_length=2000, enable_analyzer=True, enable_match=True,
|
||
analyzer_params=analyzer_params),
|
||
gen_json_field(),
|
||
gen_array_field(name="array_int", element_type=DataType.INT64),
|
||
gen_array_field(name="array_float", element_type=DataType.FLOAT),
|
||
gen_array_field(name="array_varchar", element_type=DataType.VARCHAR, max_length=200),
|
||
gen_array_field(name="array_bool", element_type=DataType.BOOL),
|
||
gen_float_vec_field(dim=dim),
|
||
gen_float_vec_field(name="image_emb", dim=dim),
|
||
gen_float_vec_field(name="text_sparse_emb", vector_data_type="SPARSE_FLOAT_VECTOR"),
|
||
gen_float_vec_field(name="voice_emb", dim=dim),
|
||
]
|
||
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id,
|
||
enable_dynamic_field=enable_dynamic_field, **kwargs)
|
||
bm25_function = Function(
|
||
name=f"text",
|
||
function_type=FunctionType.BM25,
|
||
input_field_names=["text"],
|
||
output_field_names=["text_sparse_emb"],
|
||
params={},
|
||
)
|
||
schema.add_function(bm25_function)
|
||
return schema
|
||
|
||
|
||
def gen_array_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False,
|
||
dim=ct.default_dim, enable_dynamic_field=False, max_capacity=ct.default_max_capacity,
|
||
max_length=100, with_json=False, **kwargs):
|
||
if enable_dynamic_field:
|
||
if primary_field is ct.default_int64_field_name:
|
||
fields = [gen_int64_field(), gen_float_vec_field(dim=dim)]
|
||
elif primary_field is ct.default_string_field_name:
|
||
fields = [gen_string_field(), gen_float_vec_field(dim=dim)]
|
||
else:
|
||
log.error("Primary key only support int or varchar")
|
||
assert False
|
||
else:
|
||
fields = [gen_int64_field(), gen_float_vec_field(dim=dim), gen_json_field(nullable=True),
|
||
gen_array_field(name=ct.default_int32_array_field_name, element_type=DataType.INT32,
|
||
max_capacity=max_capacity),
|
||
gen_array_field(name=ct.default_float_array_field_name, element_type=DataType.FLOAT,
|
||
max_capacity=max_capacity),
|
||
gen_array_field(name=ct.default_string_array_field_name, element_type=DataType.VARCHAR,
|
||
max_capacity=max_capacity, max_length=max_length, nullable=True)]
|
||
if with_json is False:
|
||
fields.remove(gen_json_field(nullable=True))
|
||
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id,
|
||
enable_dynamic_field=enable_dynamic_field, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_bulk_insert_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, with_varchar_field=True,
|
||
auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=False):
|
||
if enable_dynamic_field:
|
||
if primary_field is ct.default_int64_field_name:
|
||
fields = [gen_int64_field(), gen_float_vec_field(dim=dim)]
|
||
elif primary_field is ct.default_string_field_name:
|
||
fields = [gen_string_field(), gen_float_vec_field(dim=dim)]
|
||
else:
|
||
log.error("Primary key only support int or varchar")
|
||
assert False
|
||
else:
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(),
|
||
gen_float_vec_field(dim=dim)]
|
||
if with_json is False:
|
||
fields.remove(gen_json_field())
|
||
if with_varchar_field is False:
|
||
fields.remove(gen_string_field())
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id,
|
||
enable_dynamic_field=enable_dynamic_field)
|
||
return schema
|
||
|
||
|
||
def gen_general_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, is_binary=False, dim=ct.default_dim, **kwargs):
|
||
if is_binary:
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_binary_vec_field(dim=dim)]
|
||
else:
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_string_pk_default_collection_schema(description=ct.default_desc, primary_field=ct.default_string_field_name,
|
||
auto_id=False, dim=ct.default_dim, **kwargs):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_json_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim, **kwargs):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_multiple_json_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim, **kwargs):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(name="json1"),
|
||
gen_json_field(name="json2"), gen_float_vec_field(dim=dim)]
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_collection_schema_all_datatype(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=True,
|
||
multiple_dim_array=[], nullable_fields={}, default_value_fields={},
|
||
**kwargs):
|
||
# gen primary key field
|
||
if default_value_fields.get(ct.default_int64_field_name) is None:
|
||
int64_field = gen_int64_field()
|
||
else:
|
||
int64_field = gen_int64_field(default_value=default_value_fields.get(ct.default_int64_field_name))
|
||
|
||
if enable_dynamic_field:
|
||
fields = [gen_int64_field()]
|
||
else:
|
||
if default_value_fields.get(ct.default_int32_field_name) is None:
|
||
int32_field = gen_int32_field(nullable=(ct.default_int32_field_name in nullable_fields))
|
||
else:
|
||
int32_field = gen_int32_field(nullable=(ct.default_int32_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_int32_field_name))
|
||
if default_value_fields.get(ct.default_int16_field_name) is None:
|
||
int16_field = gen_int16_field(nullable=(ct.default_int16_field_name in nullable_fields))
|
||
else:
|
||
int16_field = gen_int16_field(nullable=(ct.default_int16_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_int16_field_name))
|
||
if default_value_fields.get(ct.default_int8_field_name) is None:
|
||
int8_field = gen_int8_field(nullable=(ct.default_int8_field_name in nullable_fields))
|
||
else:
|
||
int8_field = gen_int8_field(nullable=(ct.default_int8_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_int8_field_name))
|
||
if default_value_fields.get(ct.default_bool_field_name) is None:
|
||
bool_field = gen_bool_field(nullable=(ct.default_bool_field_name in nullable_fields))
|
||
else:
|
||
bool_field = gen_bool_field(nullable=(ct.default_bool_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_bool_field_name))
|
||
if default_value_fields.get(ct.default_float_field_name) is None:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
|
||
else:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_float_field_name))
|
||
if default_value_fields.get(ct.default_double_field_name) is None:
|
||
double_field = gen_double_field(nullable=(ct.default_double_field_name in nullable_fields))
|
||
else:
|
||
double_field = gen_double_field(nullable=(ct.default_double_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_double_field_name))
|
||
if default_value_fields.get(ct.default_string_field_name) is None:
|
||
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields))
|
||
else:
|
||
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_string_field_name))
|
||
if default_value_fields.get(ct.default_json_field_name) is None:
|
||
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields))
|
||
else:
|
||
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_json_field_name))
|
||
fields = [int64_field, int32_field, int16_field, int8_field, bool_field,
|
||
float_field, double_field, string_field, json_field]
|
||
if with_json is False:
|
||
fields.remove(json_field)
|
||
|
||
if len(multiple_dim_array) == 0:
|
||
# gen vector field
|
||
if default_value_fields.get(ct.default_float_vec_field_name) is None:
|
||
float_vector_field = gen_float_vec_field(dim=dim)
|
||
else:
|
||
float_vector_field = gen_float_vec_field(dim=dim,
|
||
default_value=default_value_fields.get(ct.default_float_vec_field_name))
|
||
fields.append(float_vector_field)
|
||
else:
|
||
multiple_dim_array.insert(0, dim)
|
||
for i in range(len(multiple_dim_array)):
|
||
if ct.append_vector_type[i%3] != ct.sparse_vector:
|
||
if default_value_fields.get(ct.append_vector_type[i%3]) is None:
|
||
vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.append_vector_type[i%3]}",
|
||
dim=multiple_dim_array[i],
|
||
vector_data_type=ct.append_vector_type[i%3])
|
||
else:
|
||
vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.append_vector_type[i%3]}",
|
||
dim=multiple_dim_array[i],
|
||
vector_data_type=ct.append_vector_type[i%3],
|
||
default_value=default_value_fields.get(ct.append_vector_type[i%3]))
|
||
fields.append(vector_field)
|
||
else:
|
||
# The field of a sparse vector cannot be dimensioned
|
||
if default_value_fields.get(ct.default_sparse_vec_field_name) is None:
|
||
sparse_vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.sparse_vector}",
|
||
vector_data_type=ct.sparse_vector)
|
||
else:
|
||
sparse_vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.sparse_vector}",
|
||
vector_data_type=ct.sparse_vector,
|
||
default_value=default_value_fields.get(ct.default_sparse_vec_field_name))
|
||
fields.append(sparse_vector_field)
|
||
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field, auto_id=auto_id,
|
||
enable_dynamic_field=enable_dynamic_field, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_collection_schema(fields, primary_field=None, description=ct.default_desc, auto_id=False, **kwargs):
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, primary_field=primary_field,
|
||
description=description, auto_id=auto_id, **kwargs)
|
||
return schema
|
||
|
||
|
||
def gen_default_binary_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, dim=ct.default_dim, nullable_fields={}, default_value_fields={},
|
||
**kwargs):
|
||
if default_value_fields.get(ct.default_int64_field_name) is None:
|
||
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields))
|
||
else:
|
||
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_int64_field_name))
|
||
if default_value_fields.get(ct.default_float_field_name) is None:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
|
||
else:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_float_field_name))
|
||
if default_value_fields.get(ct.default_string_field_name) is None:
|
||
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields))
|
||
else:
|
||
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_string_field_name))
|
||
if default_value_fields.get(ct.default_binary_vec_field_name) is None:
|
||
binary_vec_field = gen_binary_vec_field(dim=dim, nullable=(ct.default_binary_vec_field_name in nullable_fields))
|
||
else:
|
||
binary_vec_field = gen_binary_vec_field(dim=dim, nullable=(ct.default_binary_vec_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_binary_vec_field_name))
|
||
fields = [int64_field, float_field, string_field, binary_vec_field]
|
||
binary_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field,
|
||
auto_id=auto_id, **kwargs)
|
||
return binary_schema
|
||
|
||
|
||
def gen_default_sparse_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
|
||
auto_id=False, with_json=False, multiple_dim_array=[], nullable_fields={},
|
||
default_value_fields={}, **kwargs):
|
||
if default_value_fields.get(ct.default_int64_field_name) is None:
|
||
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields))
|
||
else:
|
||
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_int64_field_name))
|
||
if default_value_fields.get(ct.default_float_field_name) is None:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
|
||
else:
|
||
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_float_field_name))
|
||
if default_value_fields.get(ct.default_string_field_name) is None:
|
||
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields))
|
||
else:
|
||
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_string_field_name))
|
||
if default_value_fields.get(ct.default_sparse_vec_field_name) is None:
|
||
sparse_vec_field = gen_sparse_vec_field(nullable=(ct.default_sparse_vec_field_name in nullable_fields))
|
||
else:
|
||
sparse_vec_field = gen_sparse_vec_field(nullable=(ct.default_sparse_vec_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_sparse_vec_field_name))
|
||
fields = [int64_field, float_field, string_field, sparse_vec_field]
|
||
|
||
if with_json:
|
||
if default_value_fields.get(ct.default_json_field_name) is None:
|
||
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields))
|
||
else:
|
||
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields),
|
||
default_value=default_value_fields.get(ct.default_json_field_name))
|
||
fields.insert(-1, json_field)
|
||
|
||
if len(multiple_dim_array) != 0:
|
||
for i in range(len(multiple_dim_array)):
|
||
vec_name = ct.default_sparse_vec_field_name + "_" + str(i)
|
||
vec_field = gen_sparse_vec_field(name=vec_name)
|
||
fields.append(vec_field)
|
||
sparse_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
|
||
primary_field=primary_field,
|
||
auto_id=auto_id, **kwargs)
|
||
return sparse_schema
|
||
|
||
|
||
def gen_schema_multi_vector_fields(vec_fields):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
|
||
fields.extend(vec_fields)
|
||
primary_field = ct.default_int64_field_name
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
|
||
primary_field=primary_field, auto_id=False)
|
||
return schema
|
||
|
||
|
||
def gen_schema_multi_string_fields(string_fields):
|
||
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
|
||
fields.extend(string_fields)
|
||
primary_field = ct.default_int64_field_name
|
||
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
|
||
primary_field=primary_field, auto_id=False)
|
||
return schema
|
||
|
||
|
||
def gen_vectors(nb, dim, vector_data_type="FLOAT_VECTOR"):
|
||
vectors = []
|
||
if vector_data_type == "FLOAT_VECTOR":
|
||
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
|
||
elif vector_data_type == "FLOAT16_VECTOR":
|
||
vectors = gen_fp16_vectors(nb, dim)[1]
|
||
elif vector_data_type == "BFLOAT16_VECTOR":
|
||
vectors = gen_bf16_vectors(nb, dim)[1]
|
||
elif vector_data_type == "SPARSE_FLOAT_VECTOR":
|
||
vectors = gen_sparse_vectors(nb, dim)
|
||
elif vector_data_type == "TEXT_SPARSE_VECTOR":
|
||
vectors = gen_text_vectors(nb)
|
||
else:
|
||
log.error(f"Invalid vector data type: {vector_data_type}")
|
||
raise Exception(f"Invalid vector data type: {vector_data_type}")
|
||
if dim > 1:
|
||
if vector_data_type == "FLOAT_VECTOR":
|
||
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
|
||
vectors = vectors.tolist()
|
||
return vectors
|
||
|
||
|
||
def gen_text_vectors(nb, language="en"):
|
||
|
||
fake = Faker("en_US")
|
||
if language == "zh":
|
||
fake = Faker("zh_CN")
|
||
vectors = [" milvus " + fake.text() for _ in range(nb)]
|
||
return vectors
|
||
|
||
|
||
def gen_string(nb):
|
||
string_values = [str(random.random()) for _ in range(nb)]
|
||
return string_values
|
||
|
||
|
||
def gen_binary_vectors(num, dim):
|
||
raw_vectors = []
|
||
binary_vectors = []
|
||
for _ in range(num):
|
||
raw_vector = [random.randint(0, 1) for _ in range(dim)]
|
||
raw_vectors.append(raw_vector)
|
||
# packs a binary-valued array into bits in a unit8 array, and bytes array_of_ints
|
||
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
|
||
return raw_vectors, binary_vectors
|
||
|
||
|
||
def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
|
||
random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[],
|
||
vector_data_type="FLOAT_VECTOR", auto_id=False,
|
||
primary_field=ct.default_int64_field_name, nullable_fields={}, language=None):
|
||
if not random_primary_key:
|
||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
else:
|
||
int_values = pd.Series(data=random.sample(range(start, start + nb), nb))
|
||
|
||
float_data = [np.float32(i) for i in range(start, start + nb)]
|
||
float_values = pd.Series(data=float_data, dtype="float32")
|
||
if ct.default_float_field_name in nullable_fields:
|
||
null_number = int(nb*nullable_fields[ct.default_float_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
float_data = float_data[:nb-null_number] + null_data
|
||
log.debug(float_data)
|
||
float_values = pd.Series(data=float_data, dtype=object)
|
||
|
||
string_data = [str(i) for i in range(start, start + nb)]
|
||
if language:
|
||
string_data = [generate_random_sentence(language) for _ in range(nb)]
|
||
string_values = pd.Series(data=string_data, dtype="string")
|
||
if ct.default_string_field_name in nullable_fields:
|
||
null_number = int(nb*nullable_fields[ct.default_string_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
string_data = string_data[:nb-null_number] + null_data
|
||
string_values = pd.Series(data=string_data, dtype=object)
|
||
|
||
json_values = [{"number": i, "float": i*1.0} for i in range(start, start + nb)]
|
||
if ct.default_json_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_json_field_name])
|
||
null_data = [{"number": None, "float": None} for _ in range(null_number)]
|
||
json_values = json_values[:nb-null_number] + null_data
|
||
|
||
float_vec_values = gen_vectors(nb, dim, vector_data_type=vector_data_type)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_json_field_name: json_values,
|
||
ct.default_float_vec_field_name: float_vec_values
|
||
})
|
||
|
||
if with_json is False:
|
||
df.drop(ct.default_json_field_name, axis=1, inplace=True)
|
||
if auto_id is True:
|
||
if primary_field == ct.default_int64_field_name:
|
||
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
||
elif primary_field == ct.default_string_field_name:
|
||
df.drop(ct.default_string_field_name, axis=1, inplace=True)
|
||
if len(multiple_dim_array) != 0:
|
||
if len(multiple_vector_field_name) != len(multiple_dim_array):
|
||
log.error("multiple vector feature is enabled, please input the vector field name list "
|
||
"not including the default vector field")
|
||
assert len(multiple_vector_field_name) == len(multiple_dim_array)
|
||
for i in range(len(multiple_dim_array)):
|
||
new_float_vec_values = gen_vectors(nb, multiple_dim_array[i], vector_data_type=vector_data_type)
|
||
df[multiple_vector_field_name[i]] = new_float_vec_values
|
||
|
||
return df
|
||
|
||
|
||
def gen_default_list_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
|
||
random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[],
|
||
vector_data_type="FLOAT_VECTOR", auto_id=False,
|
||
primary_field=ct.default_int64_field_name, nullable_fields={}, language=None):
|
||
insert_list = []
|
||
if not random_primary_key:
|
||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
else:
|
||
int_values = pd.Series(data=random.sample(range(start, start + nb), nb))
|
||
float_data = [np.float32(i) for i in range(start, start + nb)]
|
||
float_values = pd.Series(data=float_data, dtype="float32")
|
||
if ct.default_float_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_float_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
float_data = float_data[:nb - null_number] + null_data
|
||
float_values = pd.Series(data=float_data, dtype=object)
|
||
string_data = [str(i) for i in range(start, start + nb)]
|
||
if language:
|
||
string_data = [generate_random_sentence(language) for _ in range(nb)]
|
||
string_values = pd.Series(data=string_data, dtype="string")
|
||
if ct.default_string_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_string_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
string_data = string_data[:nb - null_number] + null_data
|
||
string_values = pd.Series(data=string_data, dtype=object)
|
||
json_values = [{"number": i, "float": i*1.0} for i in range(start, start + nb)]
|
||
if ct.default_json_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_json_field_name])
|
||
null_data = [{"number": None, "float": None} for _ in range(null_number)]
|
||
json_values = json_values[:nb-null_number] + null_data
|
||
float_vec_values = gen_vectors(nb, dim, vector_data_type=vector_data_type)
|
||
insert_list = [int_values, float_values, string_values]
|
||
|
||
if with_json is True:
|
||
insert_list.append(json_values)
|
||
insert_list.append(float_vec_values)
|
||
|
||
if auto_id is True:
|
||
if primary_field == ct.default_int64_field_name:
|
||
index = 0
|
||
elif primary_field == ct.default_string_field_name:
|
||
index = 2
|
||
del insert_list[index]
|
||
if len(multiple_dim_array) != 0:
|
||
# if len(multiple_vector_field_name) != len(multiple_dim_array):
|
||
# log.error("multiple vector feature is enabled, please input the vector field name list "
|
||
# "not including the default vector field")
|
||
# assert len(multiple_vector_field_name) == len(multiple_dim_array)
|
||
for i in range(len(multiple_dim_array)):
|
||
new_float_vec_values = gen_vectors(nb, multiple_dim_array[i], vector_data_type=vector_data_type)
|
||
insert_list.append(new_float_vec_values)
|
||
|
||
return insert_list
|
||
|
||
|
||
def gen_default_rows_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, multiple_dim_array=[],
|
||
multiple_vector_field_name=[], vector_data_type="FLOAT_VECTOR", auto_id=False,
|
||
primary_field = ct.default_int64_field_name, nullable_fields={}, language=None):
|
||
array = []
|
||
for i in range(start, start + nb):
|
||
dict = {ct.default_int64_field_name: i,
|
||
ct.default_float_field_name: i*1.0,
|
||
ct.default_string_field_name: str(i),
|
||
ct.default_json_field_name: {"number": i, "float": i*1.0},
|
||
ct.default_float_vec_field_name: gen_vectors(1, dim, vector_data_type=vector_data_type)[0]
|
||
}
|
||
if with_json is False:
|
||
dict.pop(ct.default_json_field_name, None)
|
||
if language:
|
||
dict[ct.default_string_field_name] = generate_random_sentence(language)
|
||
if auto_id is True:
|
||
if primary_field == ct.default_int64_field_name:
|
||
dict.pop(ct.default_int64_field_name)
|
||
elif primary_field == ct.default_string_field_name:
|
||
dict.pop(ct.default_string_field_name)
|
||
array.append(dict)
|
||
if len(multiple_dim_array) != 0:
|
||
for i in range(len(multiple_dim_array)):
|
||
dict[multiple_vector_field_name[i]] = gen_vectors(1, multiple_dim_array[i],
|
||
vector_data_type=vector_data_type)[0]
|
||
if ct.default_int64_field_name in nullable_fields:
|
||
null_number = int(nb*nullable_fields[ct.default_int64_field_name])
|
||
for single_dict in array[-null_number:]:
|
||
single_dict[ct.default_int64_field_name] = None
|
||
if ct.default_float_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_float_field_name])
|
||
for single_dict in array[-null_number:]:
|
||
single_dict[ct.default_float_field_name] = None
|
||
if ct.default_string_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_string_field_name])
|
||
for single_dict in array[-null_number:]:
|
||
single_dict[ct.default_string_field_name] = None
|
||
if ct.default_json_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_json_field_name])
|
||
for single_dict in array[-null_number:]:
|
||
single_dict[ct.default_string_field_name] = {"number": None, "float": None}
|
||
|
||
log.debug("generated default row data")
|
||
|
||
return array
|
||
|
||
|
||
def gen_json_data_for_diff_json_types(nb=ct.default_nb, start=0, json_type="json_embedded_object"):
|
||
"""
|
||
Method: gen json data for different json types. Refer to RFC7159
|
||
"""
|
||
if json_type == "json_embedded_object": # a json object with an embedd json object
|
||
return [{json_type: {"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i), "level2_array": [i for i in range(i, i + 10)]},
|
||
"float": i*1.0}, "str": str(i), "array": [i for i in range(i, i + 10)], "bool": bool(i)}
|
||
for i in range(start, start + nb)]
|
||
if json_type == "json_objects_array": # a json-objects array with 2 json objects
|
||
return [[{"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)},
|
||
{"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)}
|
||
] for i in range(start, start + nb)]
|
||
if json_type == "json_array": # single array as json value
|
||
return [[i for i in range(j, j + 10)] for j in range(start, start + nb)]
|
||
if json_type == "json_int": # single int as json value
|
||
return [i for i in range(start, start + nb)]
|
||
if json_type == "json_float": # single float as json value
|
||
return [i*1.0 for i in range(start, start + nb)]
|
||
if json_type == "json_string": # single string as json value
|
||
return [str(i) for i in range(start, start + nb)]
|
||
if json_type == "json_bool": # single bool as json value
|
||
return [bool(i) for i in range(start, start + nb)]
|
||
else:
|
||
return []
|
||
|
||
|
||
def gen_default_data_for_upsert(nb=ct.default_nb, dim=ct.default_dim, start=0, size=10000):
|
||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
float_values = pd.Series(data=[np.float32(i + size) for i in range(start, start + nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i + size) for i in range(start, start + nb)], dtype="string")
|
||
json_values = [{"number": i, "string": str(i)} for i in range(start, start + nb)]
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_json_field_name: json_values,
|
||
ct.default_float_vec_field_name: float_vec_values
|
||
})
|
||
return df, float_values
|
||
|
||
|
||
def gen_array_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, auto_id=False,
|
||
array_length=ct.default_max_capacity, with_json=False, random_primary_key=False):
|
||
if not random_primary_key:
|
||
int_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
else:
|
||
int_values = pd.Series(data=random.sample(range(start, start + nb), nb))
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
json_values = [{"number": i, "float": i * 1.0} for i in range(start, start + nb)]
|
||
|
||
int32_values = pd.Series(data=[[np.int32(j) for j in range(i, i + array_length)] for i in range(start, start + nb)])
|
||
float_values = pd.Series(data=[[np.float32(j) for j in range(i, i + array_length)] for i in range(start, start + nb)])
|
||
string_values = pd.Series(data=[[str(j) for j in range(i, i + array_length)] for i in range(start, start + nb)])
|
||
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_vec_field_name: float_vec_values,
|
||
ct.default_json_field_name: json_values,
|
||
ct.default_int32_array_field_name: int32_values,
|
||
ct.default_float_array_field_name: float_values,
|
||
ct.default_string_array_field_name: string_values,
|
||
})
|
||
if with_json is False:
|
||
df.drop(ct.default_json_field_name, axis=1, inplace=True)
|
||
if auto_id:
|
||
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
||
|
||
return df
|
||
|
||
|
||
def gen_dataframe_multi_vec_fields(vec_fields, nb=ct.default_nb):
|
||
"""
|
||
gen dataframe data for fields: int64, float, float_vec and vec_fields
|
||
:param nb: num of entities, default default_nb
|
||
:param vec_fields: list of FieldSchema
|
||
:return: dataframe
|
||
"""
|
||
int_values = pd.Series(data=[i for i in range(0, nb)])
|
||
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
|
||
})
|
||
for field in vec_fields:
|
||
dim = field.params['dim']
|
||
if field.dtype == DataType.FLOAT_VECTOR:
|
||
vec_values = gen_vectors(nb, dim)
|
||
elif field.dtype == DataType.BINARY_VECTOR:
|
||
vec_values = gen_binary_vectors(nb, dim)[1]
|
||
df[field.name] = vec_values
|
||
return df
|
||
|
||
|
||
def gen_dataframe_multi_string_fields(string_fields, nb=ct.default_nb):
|
||
"""
|
||
gen dataframe data for fields: int64, float, float_vec and vec_fields
|
||
:param nb: num of entities, default default_nb
|
||
:param vec_fields: list of FieldSchema
|
||
:return: dataframe
|
||
"""
|
||
int_values = pd.Series(data=[i for i in range(0, nb)])
|
||
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
|
||
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
|
||
})
|
||
for field in string_fields:
|
||
if field.dtype == DataType.VARCHAR:
|
||
string_values = gen_string(nb)
|
||
df[field.name] = string_values
|
||
return df
|
||
|
||
|
||
def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
|
||
auto_id=False, random_primary_key=False, multiple_dim_array=[],
|
||
multiple_vector_field_name=[], primary_field=ct.default_int64_field_name):
|
||
if not random_primary_key:
|
||
int64_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
else:
|
||
int64_values = pd.Series(data=random.sample(range(start, start + nb), nb))
|
||
int32_values = pd.Series(data=[np.int32(i) for i in range(start, start + nb)], dtype="int32")
|
||
int16_values = pd.Series(data=[np.int16(i) for i in range(start, start + nb)], dtype="int16")
|
||
int8_values = pd.Series(data=[np.int8(i) for i in range(start, start + nb)], dtype="int8")
|
||
bool_values = pd.Series(data=[np.bool_(i) for i in range(start, start + nb)], dtype="bool")
|
||
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
|
||
double_values = pd.Series(data=[np.double(i) for i in range(start, start + nb)], dtype="double")
|
||
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
|
||
json_values = [{"number": i, "string": str(i), "bool": bool(i),
|
||
"list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(start, start + nb)]
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int64_values,
|
||
ct.default_int32_field_name: int32_values,
|
||
ct.default_int16_field_name: int16_values,
|
||
ct.default_int8_field_name: int8_values,
|
||
ct.default_bool_field_name: bool_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_double_field_name: double_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_json_field_name: json_values
|
||
})
|
||
|
||
if len(multiple_dim_array) == 0:
|
||
df[ct.default_float_vec_field_name] = float_vec_values
|
||
else:
|
||
for i in range(len(multiple_dim_array)):
|
||
df[multiple_vector_field_name[i]] = gen_vectors(nb, multiple_dim_array[i], ct.append_vector_type[i%3])
|
||
|
||
if with_json is False:
|
||
df.drop(ct.default_json_field_name, axis=1, inplace=True)
|
||
if auto_id:
|
||
if primary_field == ct.default_int64_field_name:
|
||
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
||
elif primary_field == ct.default_string_field_name:
|
||
df.drop(ct.default_string_field_name, axis=1, inplace=True)
|
||
log.debug("generated data completed")
|
||
|
||
return df
|
||
|
||
|
||
def gen_general_list_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
|
||
auto_id=False, random_primary_key=False, multiple_dim_array=[],
|
||
multiple_vector_field_name=[], primary_field=ct.default_int64_field_name,
|
||
nullable_fields={}, language=None):
|
||
if not random_primary_key:
|
||
int64_values = pd.Series(data=[i for i in range(start, start + nb)])
|
||
else:
|
||
int64_values = pd.Series(data=random.sample(range(start, start + nb), nb))
|
||
int32_data = [np.int32(i) for i in range(start, start + nb)]
|
||
int32_values = pd.Series(data=int32_data, dtype="int32")
|
||
if ct.default_int32_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_int32_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
int32_data = int32_data[:nb - null_number] + null_data
|
||
int32_values = pd.Series(data=int32_data, dtype=object)
|
||
|
||
int16_data = [np.int16(i) for i in range(start, start + nb)]
|
||
int16_values = pd.Series(data=int16_data, dtype="int16")
|
||
if ct.default_int16_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_int16_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
int16_data = int16_data[:nb - null_number] + null_data
|
||
int16_values = pd.Series(data=int16_data, dtype=object)
|
||
|
||
int8_data = [np.int8(i) for i in range(start, start + nb)]
|
||
int8_values = pd.Series(data=int8_data, dtype="int8")
|
||
if ct.default_int8_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_int8_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
int8_data = int8_data[:nb - null_number] + null_data
|
||
int8_values = pd.Series(data=int8_data, dtype=object)
|
||
|
||
bool_data = [np.bool_(i) for i in range(start, start + nb)]
|
||
bool_values = pd.Series(data=bool_data, dtype="bool")
|
||
if ct.default_bool_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_bool_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
bool_data = bool_data[:nb - null_number] + null_data
|
||
bool_values = pd.Series(data=bool_data, dtype="bool")
|
||
|
||
float_data = [np.float32(i) for i in range(start, start + nb)]
|
||
float_values = pd.Series(data=float_data, dtype="float32")
|
||
if ct.default_float_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_float_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
float_data = float_data[:nb - null_number] + null_data
|
||
float_values = pd.Series(data=float_data, dtype=object)
|
||
|
||
double_data = [np.double(i) for i in range(start, start + nb)]
|
||
double_values = pd.Series(data=double_data, dtype="double")
|
||
if ct.default_double_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_double_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
double_data = double_data[:nb - null_number] + null_data
|
||
double_values = pd.Series(data=double_data, dtype=object)
|
||
|
||
string_data = [str(i) for i in range(start, start + nb)]
|
||
if language:
|
||
string_data = [generate_random_sentence(language) for _ in range(nb)]
|
||
string_values = pd.Series(data=string_data, dtype="string")
|
||
if ct.default_string_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_string_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
string_data = string_data[:nb - null_number] + null_data
|
||
string_values = pd.Series(data=string_data, dtype=object)
|
||
|
||
json_values = [{"number": i, "string": str(i), "bool": bool(i),
|
||
"list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(start, start + nb)]
|
||
if ct.default_json_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_json_field_name])
|
||
null_data = [{"number": None, "string": None, "bool": None,
|
||
"list": [None for _ in range(i, i + ct.default_json_list_length)]} for i in range(null_number)]
|
||
json_values = json_values[:nb - null_number] + null_data
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
insert_list = [int64_values, int32_values, int16_values, int8_values, bool_values, float_values, double_values,
|
||
string_values, json_values]
|
||
|
||
if len(multiple_dim_array) == 0:
|
||
insert_list.append(float_vec_values)
|
||
else:
|
||
for i in range(len(multiple_dim_array)):
|
||
insert_list.append(gen_vectors(nb, multiple_dim_array[i], ct.append_vector_type[i%3]))
|
||
|
||
if with_json is False:
|
||
# index = insert_list.index(json_values)
|
||
del insert_list[8]
|
||
if auto_id:
|
||
if primary_field == ct.default_int64_field_name:
|
||
index = insert_list.index(int64_values)
|
||
elif primary_field == ct.default_string_field_name:
|
||
index = insert_list.index(string_values)
|
||
del insert_list[index]
|
||
log.debug("generated data completed")
|
||
|
||
return insert_list
|
||
|
||
|
||
def gen_default_rows_data_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
|
||
multiple_dim_array=[], multiple_vector_field_name=[], partition_id=0,
|
||
auto_id=False, primary_field=ct.default_int64_field_name, language=None):
|
||
array = []
|
||
for i in range(start, start + nb):
|
||
dict = {ct.default_int64_field_name: i,
|
||
ct.default_int32_field_name: i,
|
||
ct.default_int16_field_name: i,
|
||
ct.default_int8_field_name: i,
|
||
ct.default_bool_field_name: bool(i),
|
||
ct.default_float_field_name: i*1.0,
|
||
ct.default_double_field_name: i * 1.0,
|
||
ct.default_string_field_name: str(i),
|
||
ct.default_json_field_name: {"number": i, "string": str(i), "bool": bool(i),
|
||
"list": [j for j in range(i, i + ct.default_json_list_length)]}
|
||
}
|
||
if with_json is False:
|
||
dict.pop(ct.default_json_field_name, None)
|
||
if language:
|
||
dict[ct.default_string_field_name] = generate_random_sentence(language)
|
||
if auto_id is True:
|
||
if primary_field == ct.default_int64_field_name:
|
||
dict.pop(ct.default_int64_field_name, None)
|
||
elif primary_field == ct.default_string_field_name:
|
||
dict.pop(ct.default_string_field_name, None)
|
||
array.append(dict)
|
||
if len(multiple_dim_array) == 0:
|
||
dict[ct.default_float_vec_field_name] = gen_vectors(1, dim)[0]
|
||
else:
|
||
for i in range(len(multiple_dim_array)):
|
||
dict[multiple_vector_field_name[i]] = gen_vectors(nb, multiple_dim_array[i],
|
||
ct.append_vector_type[i])[0]
|
||
if len(multiple_dim_array) != 0:
|
||
with open(ct.rows_all_data_type_file_path + f'_{partition_id}' + f'_dim{dim}.txt', 'wb') as json_file:
|
||
pickle.dump(array, json_file)
|
||
log.info("generated rows data")
|
||
|
||
return array
|
||
|
||
|
||
def gen_default_binary_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, auto_id=False,
|
||
primary_field=ct.default_int64_field_name, nullable_fields={}, language=None):
|
||
int_data = [i for i in range(start, start + nb)]
|
||
int_values = pd.Series(data=int_data)
|
||
if ct.default_int64_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_int64_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
int_data = int_data[:nb - null_number] + null_data
|
||
int_values = pd.Series(data=int_data, dtype=object)
|
||
|
||
float_data = [np.float32(i) for i in range(start, start + nb)]
|
||
float_values = pd.Series(data=float_data, dtype="float32")
|
||
if ct.default_float_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_float_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
float_data = float_data[:nb - null_number] + null_data
|
||
float_values = pd.Series(data=float_data, dtype=object)
|
||
|
||
string_data = [str(i) for i in range(start, start + nb)]
|
||
if language:
|
||
string_data = [generate_random_sentence(language) for _ in range(nb)]
|
||
string_values = pd.Series(data=string_data, dtype="string")
|
||
if ct.default_string_field_name in nullable_fields:
|
||
null_number = int(nb * nullable_fields[ct.default_string_field_name])
|
||
null_data = [None for _ in range(null_number)]
|
||
string_data = string_data[:nb - null_number] + null_data
|
||
string_values = pd.Series(data=string_data, dtype=object)
|
||
|
||
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
|
||
df = pd.DataFrame({
|
||
ct.default_int64_field_name: int_values,
|
||
ct.default_float_field_name: float_values,
|
||
ct.default_string_field_name: string_values,
|
||
ct.default_binary_vec_field_name: binary_vec_values
|
||
})
|
||
if auto_id is True:
|
||
if primary_field == ct.default_int64_field_name:
|
||
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
|
||
elif primary_field == ct.default_string_field_name:
|
||
df.drop(ct.default_string_field_name, axis=1, inplace=True)
|
||
|
||
return df, binary_raw_values
|
||
|
||
#
|
||
# def gen_default_list_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True):
|
||
# int_values = [i for i in range(start, start + nb)]
|
||
# float_values = [np.float32(i) for i in range(start, start + nb)]
|
||
# string_values = [str(i) for i in range(start, start + nb)]
|
||
# json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(0, i)]}
|
||
# for i in range(start, start + nb)]
|
||
# float_vec_values = gen_vectors(nb, dim)
|
||
# if with_json is False:
|
||
# data = [int_values, float_values, string_values, float_vec_values]
|
||
# else:
|
||
# data = [int_values, float_values, string_values, json_values, float_vec_values]
|
||
# return data
|
||
|
||
|
||
def gen_default_list_sparse_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=False):
|
||
int_values = [i for i in range(start, start + nb)]
|
||
float_values = [np.float32(i) for i in range(start, start + nb)]
|
||
string_values = [str(i) for i in range(start, start + nb)]
|
||
json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(0, i)]}
|
||
for i in range(start, start + nb)]
|
||
sparse_vec_values = gen_vectors(nb, dim, vector_data_type="SPARSE_FLOAT_VECTOR")
|
||
if with_json:
|
||
data = [int_values, float_values, string_values, json_values, sparse_vec_values]
|
||
else:
|
||
data = [int_values, float_values, string_values, sparse_vec_values]
|
||
return data
|
||
|
||
|
||
def gen_default_list_data_for_bulk_insert(nb=ct.default_nb, varchar_len=2000, with_varchar_field=True):
|
||
str_value = gen_str_by_length(length=varchar_len)
|
||
int_values = [i for i in range(nb)]
|
||
float_values = [np.float32(i) for i in range(nb)]
|
||
string_values = [f"{str(i)}_{str_value}" for i in range(nb)]
|
||
# in case of large nb, float_vec_values will be too large in memory
|
||
# then generate float_vec_values in each loop instead of generating all at once during generate npy or json file
|
||
float_vec_values = [] # placeholder for float_vec
|
||
data = [int_values, float_values, string_values, float_vec_values]
|
||
if with_varchar_field is False:
|
||
data = [int_values, float_values, float_vec_values]
|
||
return data
|
||
|
||
|
||
def prepare_bulk_insert_data(schema=None,
|
||
nb=ct.default_nb,
|
||
file_type="npy",
|
||
minio_endpoint="127.0.0.1:9000",
|
||
bucket_name="milvus-bucket"):
|
||
schema = gen_default_collection_schema() if schema is None else schema
|
||
dim = get_dim_by_schema(schema=schema)
|
||
log.info(f"start to generate raw data for bulk insert")
|
||
t0 = time.time()
|
||
data = get_column_data_by_schema(schema=schema, nb=nb, skip_vectors=True)
|
||
log.info(f"generate raw data for bulk insert cost {time.time() - t0} s")
|
||
data_dir = "/tmp/bulk_insert_data"
|
||
Path(data_dir).mkdir(parents=True, exist_ok=True)
|
||
log.info(f"schema:{schema}, nb:{nb}, file_type:{file_type}, minio_endpoint:{minio_endpoint}, bucket_name:{bucket_name}")
|
||
files = []
|
||
log.info(f"generate {file_type} files for bulk insert")
|
||
if file_type == "json":
|
||
files = gen_json_files_for_bulk_insert(data, schema, data_dir)
|
||
if file_type == "npy":
|
||
files = gen_npy_files_for_bulk_insert(data, schema, data_dir)
|
||
log.info(f"generated {len(files)} {file_type} files for bulk insert, cost {time.time() - t0} s")
|
||
log.info("upload file to minio")
|
||
client = Minio(minio_endpoint, access_key="minioadmin", secret_key="minioadmin", secure=False)
|
||
for file_name in files:
|
||
file_size = os.path.getsize(os.path.join(data_dir, file_name)) / 1024 / 1024
|
||
t0 = time.time()
|
||
client.fput_object(bucket_name, file_name, os.path.join(data_dir, file_name))
|
||
log.info(f"upload file {file_name} to minio, size: {file_size:.2f} MB, cost {time.time() - t0:.2f} s")
|
||
return files
|
||
|
||
|
||
def get_column_data_by_schema(nb=ct.default_nb, schema=None, skip_vectors=False, start=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
fields_not_auto_id = []
|
||
for field in fields:
|
||
if not field.auto_id:
|
||
fields_not_auto_id.append(field)
|
||
data = []
|
||
for field in fields_not_auto_id:
|
||
if field.dtype == DataType.FLOAT_VECTOR and skip_vectors is True:
|
||
tmp = []
|
||
else:
|
||
tmp = gen_data_by_collection_field(field, nb=nb, start=start)
|
||
data.append(tmp)
|
||
return data
|
||
|
||
|
||
def gen_row_data_by_schema(nb=ct.default_nb, schema=None, start=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
# ignore auto id field and the fields in function output
|
||
func_output_fields = []
|
||
if hasattr(schema, "functions"):
|
||
functions = schema.functions
|
||
for func in functions:
|
||
output_field_names = func.output_field_names
|
||
func_output_fields.extend(output_field_names)
|
||
func_output_fields = list(set(func_output_fields))
|
||
fields = schema.fields
|
||
fields_needs_data = []
|
||
for field in fields:
|
||
if field.auto_id:
|
||
continue
|
||
if field.name in func_output_fields:
|
||
continue
|
||
fields_needs_data.append(field)
|
||
data = []
|
||
for i in range(nb):
|
||
tmp = {}
|
||
for field in fields_needs_data:
|
||
tmp[field.name] = gen_data_by_collection_field(field)
|
||
if start is not None and field.dtype == DataType.INT64:
|
||
tmp[field.name] = start
|
||
start += 1
|
||
data.append(tmp)
|
||
return data
|
||
|
||
|
||
def get_fields_map(schema=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
fields_map = {}
|
||
for field in fields:
|
||
fields_map[field.name] = field.dtype
|
||
return fields_map
|
||
|
||
|
||
def get_int64_field_name(schema=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype == DataType.INT64:
|
||
return field.name
|
||
return None
|
||
|
||
|
||
def get_text_field_name(schema=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype == DataType.VARCHAR and field.params.get("enable_analyzer", False):
|
||
return field.name
|
||
return None
|
||
|
||
def get_float_field_name(schema=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype == DataType.FLOAT or field.dtype == DataType.DOUBLE:
|
||
return field.name
|
||
return None
|
||
|
||
|
||
def get_float_vec_field_name(schema=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype == DataType.FLOAT_VECTOR:
|
||
return field.name
|
||
return None
|
||
|
||
|
||
def get_float_vec_field_name_list(schema=None):
|
||
vec_fields = []
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype in [DataType.FLOAT_VECTOR, DataType.FLOAT16_VECTOR, DataType.BFLOAT16_VECTOR]:
|
||
vec_fields.append(field.name)
|
||
return vec_fields
|
||
|
||
|
||
def get_scalar_field_name_list(schema=None):
|
||
vec_fields = []
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype in [DataType.BOOL, DataType.INT8, DataType.INT16, DataType.INT32, DataType.INT64, DataType.FLOAT,
|
||
DataType.DOUBLE, DataType.VARCHAR]:
|
||
vec_fields.append(field.name)
|
||
return vec_fields
|
||
|
||
|
||
def get_binary_vec_field_name(schema=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype == DataType.BINARY_VECTOR:
|
||
return field.name
|
||
return None
|
||
|
||
|
||
def get_binary_vec_field_name_list(schema=None):
|
||
vec_fields = []
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype in [DataType.BINARY_VECTOR]:
|
||
vec_fields.append(field.name)
|
||
return vec_fields
|
||
|
||
|
||
def get_bm25_vec_field_name_list(schema=None):
|
||
if not hasattr(schema, "functions"):
|
||
return []
|
||
functions = schema.functions
|
||
bm25_func = [func for func in functions if func.type == FunctionType.BM25]
|
||
bm25_outputs = []
|
||
for func in bm25_func:
|
||
bm25_outputs.extend(func.output_field_names)
|
||
bm25_outputs = list(set(bm25_outputs))
|
||
|
||
return bm25_outputs
|
||
|
||
def get_dim_by_schema(schema=None):
|
||
if schema is None:
|
||
schema = gen_default_collection_schema()
|
||
fields = schema.fields
|
||
for field in fields:
|
||
if field.dtype == DataType.FLOAT_VECTOR or field.dtype == DataType.BINARY_VECTOR:
|
||
dim = field.params['dim']
|
||
return dim
|
||
return None
|
||
|
||
|
||
def gen_varchar_data(length: int, nb: int, text_mode=False):
|
||
if text_mode:
|
||
return [fake.text() for _ in range(nb)]
|
||
else:
|
||
return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(nb)]
|
||
|
||
|
||
def gen_data_by_collection_field(field, nb=None, start=None):
|
||
# if nb is None, return one data, else return a list of data
|
||
data_type = field.dtype
|
||
enable_analyzer = field.params.get("enable_analyzer", False)
|
||
if data_type == DataType.BOOL:
|
||
if nb is None:
|
||
return random.choice([True, False])
|
||
return [random.choice([True, False]) for _ in range(nb)]
|
||
if data_type == DataType.INT8:
|
||
if nb is None:
|
||
return random.randint(-128, 127)
|
||
return [random.randint(-128, 127) for _ in range(nb)]
|
||
if data_type == DataType.INT16:
|
||
if nb is None:
|
||
return random.randint(-32768, 32767)
|
||
return [random.randint(-32768, 32767) for _ in range(nb)]
|
||
if data_type == DataType.INT32:
|
||
if nb is None:
|
||
return random.randint(-2147483648, 2147483647)
|
||
return [random.randint(-2147483648, 2147483647) for _ in range(nb)]
|
||
if data_type == DataType.INT64:
|
||
if nb is None:
|
||
return random.randint(-9223372036854775808, 9223372036854775807)
|
||
if start is not None:
|
||
return [i for i in range(start, start+nb)]
|
||
return [random.randint(-9223372036854775808, 9223372036854775807) for _ in range(nb)]
|
||
if data_type == DataType.FLOAT:
|
||
if nb is None:
|
||
return np.float32(random.random())
|
||
return [np.float32(random.random()) for _ in range(nb)]
|
||
if data_type == DataType.DOUBLE:
|
||
if nb is None:
|
||
return np.float64(random.random())
|
||
return [np.float64(random.random()) for _ in range(nb)]
|
||
if data_type == DataType.VARCHAR:
|
||
max_length = field.params['max_length']
|
||
max_length = min(20, max_length-1)
|
||
length = random.randint(0, max_length)
|
||
if nb is None:
|
||
return gen_varchar_data(length=length, nb=1, text_mode=enable_analyzer)[0]
|
||
return gen_varchar_data(length=length, nb=nb, text_mode=enable_analyzer)
|
||
if data_type == DataType.JSON:
|
||
if nb is None:
|
||
return {"name": fake.name(), "address": fake.address()}
|
||
data = [{"name": str(i), "address": i} for i in range(nb)]
|
||
return data
|
||
if data_type == DataType.FLOAT_VECTOR:
|
||
dim = field.params['dim']
|
||
if nb is None:
|
||
return [random.random() for i in range(dim)]
|
||
return [[random.random() for i in range(dim)] for _ in range(nb)]
|
||
if data_type == DataType.BFLOAT16_VECTOR:
|
||
dim = field.params['dim']
|
||
if nb is None:
|
||
return RNG.uniform(size=dim).astype(bfloat16)
|
||
return [RNG.uniform(size=dim).astype(bfloat16) for _ in range(int(nb))]
|
||
# if nb is None:
|
||
# raw_vector = [random.random() for _ in range(dim)]
|
||
# bf16_vector = np.array(raw_vector, dtype=bfloat16).view(np.uint8).tolist()
|
||
# return bytes(bf16_vector)
|
||
# bf16_vectors = []
|
||
# for i in range(nb):
|
||
# raw_vector = [random.random() for _ in range(dim)]
|
||
# bf16_vector = np.array(raw_vector, dtype=bfloat16).view(np.uint8).tolist()
|
||
# bf16_vectors.append(bytes(bf16_vector))
|
||
# return bf16_vectors
|
||
if data_type == DataType.FLOAT16_VECTOR:
|
||
dim = field.params['dim']
|
||
if nb is None:
|
||
return np.array([random.random() for _ in range(int(dim))], dtype=np.float16)
|
||
return [np.array([random.random() for _ in range(int(dim))], dtype=np.float16) for _ in range(int(nb))]
|
||
if data_type == DataType.BINARY_VECTOR:
|
||
dim = field.params['dim']
|
||
if nb is None:
|
||
raw_vector = [random.randint(0, 1) for _ in range(dim)]
|
||
binary_byte = bytes(np.packbits(raw_vector, axis=-1).tolist())
|
||
return binary_byte
|
||
return [bytes(np.packbits([random.randint(0, 1) for _ in range(dim)], axis=-1).tolist()) for _ in range(nb)]
|
||
if data_type == DataType.SPARSE_FLOAT_VECTOR:
|
||
if nb is None:
|
||
return gen_sparse_vectors(nb=1)[0]
|
||
return gen_sparse_vectors(nb=nb)
|
||
if data_type == DataType.ARRAY:
|
||
max_capacity = field.params['max_capacity']
|
||
element_type = field.element_type
|
||
if element_type == DataType.INT8:
|
||
if nb is None:
|
||
return [random.randint(-128, 127) for _ in range(max_capacity)]
|
||
return [[random.randint(-128, 127) for _ in range(max_capacity)] for _ in range(nb)]
|
||
if element_type == DataType.INT16:
|
||
if nb is None:
|
||
return [random.randint(-32768, 32767) for _ in range(max_capacity)]
|
||
return [[random.randint(-32768, 32767) for _ in range(max_capacity)] for _ in range(nb)]
|
||
if element_type == DataType.INT32:
|
||
if nb is None:
|
||
return [random.randint(-2147483648, 2147483647) for _ in range(max_capacity)]
|
||
return [[random.randint(-2147483648, 2147483647) for _ in range(max_capacity)] for _ in range(nb)]
|
||
if element_type == DataType.INT64:
|
||
if nb is None:
|
||
return [random.randint(-9223372036854775808, 9223372036854775807) for _ in range(max_capacity)]
|
||
return [[random.randint(-9223372036854775808, 9223372036854775807) for _ in range(max_capacity)] for _ in range(nb)]
|
||
|
||
if element_type == DataType.BOOL:
|
||
if nb is None:
|
||
return [random.choice([True, False]) for _ in range(max_capacity)]
|
||
return [[random.choice([True, False]) for _ in range(max_capacity)] for _ in range(nb)]
|
||
|
||
if element_type == DataType.FLOAT:
|
||
if nb is None:
|
||
return [np.float32(random.random()) for _ in range(max_capacity)]
|
||
return [[np.float32(random.random()) for _ in range(max_capacity)] for _ in range(nb)]
|
||
if element_type == DataType.DOUBLE:
|
||
if nb is None:
|
||
return [np.float64(random.random()) for _ in range(max_capacity)]
|
||
return [[np.float64(random.random()) for _ in range(max_capacity)] for _ in range(nb)]
|
||
|
||
if element_type == DataType.VARCHAR:
|
||
max_length = field.params['max_length']
|
||
max_length = min(20, max_length - 1)
|
||
length = random.randint(0, max_length)
|
||
if nb is None:
|
||
return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(max_capacity)]
|
||
return [["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(max_capacity)] for _ in range(nb)]
|
||
return None
|
||
|
||
|
||
def gen_data_by_collection_schema(schema, nb, r=0):
|
||
"""
|
||
gen random data by collection schema, regardless of primary key or auto_id
|
||
vector type only support for DataType.FLOAT_VECTOR
|
||
"""
|
||
data = []
|
||
start_uid = r * nb
|
||
fields = schema.fields
|
||
for field in fields:
|
||
data.append(gen_data_by_collection_field(field, nb, start_uid))
|
||
return data
|
||
|
||
|
||
def gen_varchar_values(nb: int, length: int = 0):
|
||
return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(nb)]
|
||
|
||
|
||
def gen_values(schema: CollectionSchema, nb, start_id=0, default_values: dict = {}):
|
||
"""
|
||
generate default value according to the collection fields,
|
||
which can replace the value of the specified field
|
||
"""
|
||
data = []
|
||
for field in schema.fields:
|
||
default_value = default_values.get(field.name, None)
|
||
if default_value is not None:
|
||
data.append(default_value)
|
||
elif field.auto_id is False:
|
||
data.append(gen_data_by_collection_field(field, nb, start_id))
|
||
return data
|
||
|
||
|
||
def gen_field_values(schema: CollectionSchema, nb, start_id=0, default_values: dict = {}) -> dict:
|
||
"""
|
||
generate default value according to the collection fields,
|
||
which can replace the value of the specified field
|
||
|
||
return: <dict>
|
||
<field name>: <value list>
|
||
"""
|
||
data = {}
|
||
for field in schema.fields:
|
||
default_value = default_values.get(field.name, None)
|
||
if default_value is not None:
|
||
data[field.name] = default_value
|
||
elif field.auto_id is False:
|
||
data[field.name] = gen_data_by_collection_field(field, nb, start_id * nb)
|
||
return data
|
||
|
||
|
||
def gen_json_files_for_bulk_insert(data, schema, data_dir):
|
||
for d in data:
|
||
if len(d) > 0:
|
||
nb = len(d)
|
||
dim = get_dim_by_schema(schema)
|
||
vec_field_name = get_float_vec_field_name(schema)
|
||
fields_name = [field.name for field in schema.fields]
|
||
# get vec field index
|
||
vec_field_index = fields_name.index(vec_field_name)
|
||
uuid_str = str(uuid.uuid4())
|
||
log.info(f"file dir name: {uuid_str}")
|
||
file_name = f"{uuid_str}/bulk_insert_data_source_dim_{dim}_nb_{nb}.json"
|
||
files = [file_name]
|
||
data_source = os.path.join(data_dir, file_name)
|
||
Path(data_source).parent.mkdir(parents=True, exist_ok=True)
|
||
log.info(f"file name: {data_source}")
|
||
with open(data_source, "w") as f:
|
||
f.write("{")
|
||
f.write("\n")
|
||
f.write('"rows":[')
|
||
f.write("\n")
|
||
for i in range(nb):
|
||
entity_value = [None for _ in range(len(fields_name))]
|
||
for j in range(len(data)):
|
||
if j == vec_field_index:
|
||
entity_value[j] = [random.random() for _ in range(dim)]
|
||
else:
|
||
entity_value[j] = data[j][i]
|
||
entity = dict(zip(fields_name, entity_value))
|
||
f.write(json.dumps(entity, indent=4, default=to_serializable))
|
||
if i != nb - 1:
|
||
f.write(",")
|
||
f.write("\n")
|
||
f.write("]")
|
||
f.write("\n")
|
||
f.write("}")
|
||
return files
|
||
|
||
|
||
def gen_npy_files_for_bulk_insert(data, schema, data_dir):
|
||
for d in data:
|
||
if len(d) > 0:
|
||
nb = len(d)
|
||
dim = get_dim_by_schema(schema)
|
||
vec_field_name = get_float_vec_field_name(schema)
|
||
fields_name = [field.name for field in schema.fields]
|
||
files = []
|
||
uuid_str = uuid.uuid4()
|
||
for field in fields_name:
|
||
files.append(f"{uuid_str}/{field}.npy")
|
||
for i, file in enumerate(files):
|
||
data_source = os.path.join(data_dir, file)
|
||
# mkdir for npy file
|
||
Path(data_source).parent.mkdir(parents=True, exist_ok=True)
|
||
log.info(f"save file {data_source}")
|
||
if vec_field_name in file:
|
||
log.info(f"generate {nb} vectors with dim {dim} for {data_source}")
|
||
with NpyAppendArray(data_source, "wb") as npaa:
|
||
for j in range(nb):
|
||
vector = np.array([[random.random() for _ in range(dim)]])
|
||
npaa.append(vector)
|
||
|
||
elif isinstance(data[i][0], dict):
|
||
tmp = []
|
||
for d in data[i]:
|
||
tmp.append(json.dumps(d))
|
||
data[i] = tmp
|
||
np.save(data_source, np.array(data[i]))
|
||
else:
|
||
np.save(data_source, np.array(data[i]))
|
||
return files
|
||
|
||
|
||
def gen_default_tuple_data(nb=ct.default_nb, dim=ct.default_dim):
|
||
int_values = [i for i in range(nb)]
|
||
float_values = [np.float32(i) for i in range(nb)]
|
||
string_values = [str(i) for i in range(nb)]
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
data = (int_values, float_values, string_values, float_vec_values)
|
||
return data
|
||
|
||
|
||
def gen_numpy_data(nb=ct.default_nb, dim=ct.default_dim):
|
||
int_values = np.arange(nb, dtype='int64')
|
||
float_values = np.arange(nb, dtype='float32')
|
||
string_values = [np.str_(i) for i in range(nb)]
|
||
json_values = [{"number": i, "string": str(i), "bool": bool(i),
|
||
"list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(nb)]
|
||
float_vec_values = gen_vectors(nb, dim)
|
||
data = [int_values, float_values, string_values, json_values, float_vec_values]
|
||
return data
|
||
|
||
|
||
def gen_default_binary_list_data(nb=ct.default_nb, dim=ct.default_dim):
|
||
int_values = [i for i in range(nb)]
|
||
float_values = [np.float32(i) for i in range(nb)]
|
||
string_values = [str(i) for i in range(nb)]
|
||
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
|
||
data = [int_values, float_values, string_values, binary_vec_values]
|
||
return data, binary_raw_values
|
||
|
||
|
||
def gen_simple_index():
|
||
index_params = []
|
||
for i in range(len(ct.all_index_types)):
|
||
if ct.all_index_types[i] in ct.binary_support:
|
||
continue
|
||
elif ct.all_index_types[i] in ct.sparse_support:
|
||
continue
|
||
elif ct.all_index_types[i] in ct.gpu_support:
|
||
continue
|
||
dic = {"index_type": ct.all_index_types[i], "metric_type": "L2"}
|
||
dic.update({"params": ct.default_all_indexes_params[i]})
|
||
index_params.append(dic)
|
||
return index_params
|
||
|
||
|
||
def gen_autoindex_params():
|
||
index_params = [
|
||
{},
|
||
{"metric_type": "IP"},
|
||
{"metric_type": "L2"},
|
||
{"metric_type": "COSINE"},
|
||
{"index_type": "AUTOINDEX"},
|
||
{"index_type": "AUTOINDEX", "metric_type": "L2"},
|
||
{"index_type": "AUTOINDEX", "metric_type": "COSINE"},
|
||
{"index_type": "IVF_FLAT", "metric_type": "L2", "nlist": "1024", "m": "100"},
|
||
{"index_type": "DISKANN", "metric_type": "L2"},
|
||
{"index_type": "IVF_PQ", "nlist": "128", "m": "16", "nbits": "8", "metric_type": "IP"},
|
||
{"index_type": "IVF_SQ8", "nlist": "128", "metric_type": "COSINE"}
|
||
]
|
||
return index_params
|
||
|
||
|
||
def gen_invalid_field_types():
|
||
field_types = [
|
||
6,
|
||
1.0,
|
||
[[]],
|
||
{},
|
||
(),
|
||
"",
|
||
"a"
|
||
]
|
||
return field_types
|
||
|
||
|
||
def gen_invalid_search_params_type():
|
||
invalid_search_key = 100
|
||
search_params = []
|
||
for index_type in ct.all_index_types:
|
||
if index_type == "FLAT":
|
||
continue
|
||
# search_params.append({"index_type": index_type, "search_params": {"invalid_key": invalid_search_key}})
|
||
if index_type in ["IVF_FLAT", "IVF_SQ8", "IVF_PQ", "BIN_FLAT", "BIN_IVF_FLAT"]:
|
||
for nprobe in ct.get_invalid_ints:
|
||
ivf_search_params = {"index_type": index_type, "search_params": {"nprobe": nprobe}}
|
||
search_params.append(ivf_search_params)
|
||
elif index_type in ["HNSW"]:
|
||
for ef in ct.get_invalid_ints:
|
||
hnsw_search_param = {"index_type": index_type, "search_params": {"ef": ef}}
|
||
search_params.append(hnsw_search_param)
|
||
elif index_type == "ANNOY":
|
||
for search_k in ct.get_invalid_ints:
|
||
if isinstance(search_k, int):
|
||
continue
|
||
annoy_search_param = {"index_type": index_type, "search_params": {"search_k": search_k}}
|
||
search_params.append(annoy_search_param)
|
||
elif index_type == "SCANN":
|
||
for reorder_k in ct.get_invalid_ints:
|
||
if isinstance(reorder_k, int):
|
||
continue
|
||
scann_search_param = {"index_type": index_type, "search_params": {"nprobe": 8, "reorder_k": reorder_k}}
|
||
search_params.append(scann_search_param)
|
||
elif index_type == "DISKANN":
|
||
for search_list in ct.get_invalid_ints[1:]:
|
||
diskann_search_param = {"index_type": index_type, "search_params": {"search_list": search_list}}
|
||
search_params.append(diskann_search_param)
|
||
return search_params
|
||
|
||
|
||
def gen_search_param(index_type, metric_type="L2"):
|
||
search_params = []
|
||
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "GPU_IVF_FLAT", "GPU_IVF_PQ"]:
|
||
if index_type in ["GPU_FLAT"]:
|
||
ivf_search_params = {"metric_type": metric_type, "params": {}}
|
||
search_params.append(ivf_search_params)
|
||
else:
|
||
for nprobe in [64]:
|
||
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
|
||
search_params.append(ivf_search_params)
|
||
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
|
||
if metric_type not in ct.binary_metrics:
|
||
log.error("Metric type error: binary index only supports distance type in (%s)" % ct.binary_metrics)
|
||
# default metric type for binary index
|
||
metric_type = "JACCARD"
|
||
for nprobe in [64, 128]:
|
||
binary_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
|
||
search_params.append(binary_search_params)
|
||
elif index_type in ["HNSW"]:
|
||
for ef in [64, 1500, 32768]:
|
||
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
|
||
search_params.append(hnsw_search_param)
|
||
elif index_type == "ANNOY":
|
||
for search_k in [1000, 5000]:
|
||
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
|
||
search_params.append(annoy_search_param)
|
||
elif index_type == "SCANN":
|
||
for reorder_k in [1200, 3000]:
|
||
scann_search_param = {"metric_type": metric_type, "params": {"nprobe": 64, "reorder_k": reorder_k}}
|
||
search_params.append(scann_search_param)
|
||
elif index_type == "DISKANN":
|
||
for search_list in [20, 300, 1500]:
|
||
diskann_search_param = {"metric_type": metric_type, "params": {"search_list": search_list}}
|
||
search_params.append(diskann_search_param)
|
||
else:
|
||
log.error("Invalid index_type.")
|
||
raise Exception("Invalid index_type.")
|
||
log.debug(search_params)
|
||
|
||
return search_params
|
||
|
||
|
||
def gen_autoindex_search_params():
|
||
search_params = [
|
||
{},
|
||
{"metric_type": "IP"},
|
||
{"nlist": "1024"},
|
||
{"efSearch": "100"},
|
||
{"search_k": "1000"}
|
||
]
|
||
return search_params
|
||
|
||
|
||
def gen_all_type_fields():
|
||
fields = []
|
||
for k, v in DataType.__members__.items():
|
||
if v != DataType.UNKNOWN:
|
||
field, _ = ApiFieldSchemaWrapper().init_field_schema(name=k.lower(), dtype=v)
|
||
fields.append(field)
|
||
return fields
|
||
|
||
|
||
def gen_normal_expressions_and_templates():
|
||
"""
|
||
Gen a list of filter in expression-format(as a string) and template-format(as a dict)
|
||
The two formats equals to each other.
|
||
"""
|
||
expressions = [
|
||
["", {"expr": "", "expr_params": {}}],
|
||
["int64 > 0", {"expr": "int64 > {value_0}", "expr_params": {"value_0": 0}}],
|
||
["(int64 > 0 && int64 < 400) or (int64 > 500 && int64 < 1000)",
|
||
{"expr": "(int64 > {value_0} && int64 < {value_1}) or (int64 > {value_2} && int64 < {value_3})",
|
||
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 500, "value_3": 1000}}],
|
||
["int64 not in [1, 2, 3]", {"expr": "int64 not in {value_0}", "expr_params": {"value_0": [1, 2, 3]}}],
|
||
["int64 in [1, 2, 3] and float != 2", {"expr": "int64 in {value_0} and float != {value_1}",
|
||
"expr_params": {"value_0": [1, 2, 3], "value_1": 2}}],
|
||
["int64 == 0 || float == 10**2 || (int64 + 1) == 3",
|
||
{"expr": "int64 == {value_0} || float == {value_1} || (int64 + {value_2}) == {value_3}",
|
||
"expr_params": {"value_0": 0, "value_1": 10**2, "value_2": 1, "value_3": 3}}],
|
||
["0 <= int64 < 400 and int64 % 100 == 0",
|
||
{"expr": "{value_0} <= int64 < {value_1} and int64 % {value_2} == {value_0}",
|
||
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 100}}],
|
||
["200+300 < int64 <= 500+500", {"expr": "{value_0} < int64 <= {value_1}",
|
||
"expr_params": {"value_1": 500+500, "value_0": 200+300}}],
|
||
["int64 > 400 && int64 < 200", {"expr": "int64 > {value_0} && int64 < {value_1}",
|
||
"expr_params": {"value_0": 400, "value_1": 200}}],
|
||
["int64 in [300/2, 900%40, -10*30+800, (100+200)*2] or float in [+3**6, 2**10/2]",
|
||
{"expr": "int64 in {value_0} or float in {value_1}",
|
||
"expr_params": {"value_0": [int(300/2), 900%40, -10*30+800, (100+200)*2], "value_1": [+3**6*1.0, 2**10/2*1.0]}}],
|
||
["float <= -4**5/2 && float > 500-1 && float != 500/2+260",
|
||
{"expr": "float <= {value_0} && float > {value_1} && float != {value_2}",
|
||
"expr_params": {"value_0": -4**5/2, "value_1": 500-1, "value_2": 500/2+260}}],
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_json_field_expressions_and_templates():
|
||
"""
|
||
Gen a list of filter in expression-format(as a string) and template-format(as a dict)
|
||
The two formats equals to each other.
|
||
"""
|
||
expressions = [
|
||
["json_field['number'] > 0", {"expr": "json_field['number'] > {value_0}", "expr_params": {"value_0": 0}}],
|
||
["0 <= json_field['number'] < 400 or 1000 > json_field['number'] >= 500",
|
||
{"expr": "{value_0} <= json_field['number'] < {value_1} or {value_2} > json_field['number'] >= {value_3}",
|
||
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 1000, "value_3": 500}}],
|
||
["json_field['number'] not in [1, 2, 3]", {"expr": "json_field['number'] not in {value_0}",
|
||
"expr_params": {"value_0": [1, 2, 3]}}],
|
||
["json_field['number'] in [1, 2, 3] and json_field['float'] != 2",
|
||
{"expr": "json_field['number'] in {value_0} and json_field['float'] != {value_1}",
|
||
"expr_params": {"value_0": [1, 2, 3], "value_1": 2}}],
|
||
["json_field['number'] == 0 || json_field['float'] == 10**2 || json_field['number'] + 1 == 3",
|
||
{"expr": "json_field['number'] == {value_0} || json_field['float'] == {value_1} || json_field['number'] + {value_2} == {value_3}",
|
||
"expr_params": {"value_0": 0, "value_1": 10**2, "value_2": 1, "value_3": 3}}],
|
||
["json_field['number'] < 400 and json_field['number'] >= 100 and json_field['number'] % 100 == 0",
|
||
{"expr": "json_field['number'] < {value_0} and json_field['number'] >= {value_1} and json_field['number'] % {value_1} == 0",
|
||
"expr_params": {"value_0": 400, "value_1": 100}}],
|
||
["json_field['float'] > 400 && json_field['float'] < 200", {"expr": "json_field['float'] > {value_0} && json_field['float'] < {value_1}",
|
||
"expr_params": {"value_0": 400, "value_1": 200}}],
|
||
["json_field['number'] in [300/2, -10*30+800, (100+200)*2] or json_field['float'] in [+3**6, 2**10/2]",
|
||
{"expr": "json_field['number'] in {value_0} or json_field['float'] in {value_1}",
|
||
"expr_params": {"value_0": [int(300/2), -10*30+800, (100+200)*2], "value_1": [+3**6*1.0, 2**10/2*1.0]}}],
|
||
["json_field['float'] <= -4**5/2 && json_field['float'] > 500-1 && json_field['float'] != 500/2+260",
|
||
{"expr": "json_field['float'] <= {value_0} && json_field['float'] > {value_1} && json_field['float'] != {value_2}",
|
||
"expr_params": {"value_0": -4**5/2, "value_1": 500-1, "value_2": 500/2+260}}],
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_array_field_expressions_and_templates():
|
||
"""
|
||
Gen a list of filter in expression-format(as a string) and template-format(as a dict) for a field.
|
||
The two formats equals to each other.
|
||
"""
|
||
expressions = [
|
||
["int32_array[0] > 0", {"expr": "int32_array[0] > {value_0}", "expr_params": {"value_0": 0}}],
|
||
["0 <= int32_array[0] < 400 or 1000 > float_array[1] >= 500",
|
||
{"expr": "{value_0} <= int32_array[0] < {value_1} or {value_2} > float_array[1] >= {value_3}",
|
||
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 1000, "value_3": 500}}],
|
||
["int32_array[1] not in [1, 2, 3]", {"expr": "int32_array[1] not in {value_0}", "expr_params": {"value_0": [1, 2, 3]}}],
|
||
["int32_array[1] in [1, 2, 3] and string_array[1] != '2'",
|
||
{"expr": "int32_array[1] in {value_0} and string_array[1] != {value_2}",
|
||
"expr_params": {"value_0": [1, 2, 3], "value_2": "2"}}],
|
||
["int32_array == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]", {"expr": "int32_array == {value_0}",
|
||
"expr_params": {"value_0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}}],
|
||
["int32_array[1] + 1 == 3 && int32_array[0] - 1 != 1",
|
||
{"expr": "int32_array[1] + {value_0} == {value_2} && int32_array[0] - {value_0} != {value_0}",
|
||
"expr_params": {"value_0": 1, "value_2": 3}}],
|
||
["int32_array[1] % 100 == 0 && string_array[1] in ['1', '2']",
|
||
{"expr": "int32_array[1] % {value_0} == {value_1} && string_array[1] in {value_2}",
|
||
"expr_params": {"value_0": 100, "value_1": 0, "value_2": ["1", "2"]}}],
|
||
["int32_array[1] in [300/2, -10*30+800, (200-100)*2] or (float_array[1] <= -4**5/2 || 100 <= int32_array[1] < 200)",
|
||
{"expr": "int32_array[1] in {value_0} or (float_array[1] <= {value_1} || {value_2} <= int32_array[1] < {value_3})",
|
||
"expr_params": {"value_0": [int(300/2), -10*30+800, (200-100)*2], "value_1": -4**5/2, "value_2": 100, "value_3": 200}}]
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_field_compare_expressions(fields1=None, fields2=None):
|
||
if fields1 is None:
|
||
fields1 = ["int64_1"]
|
||
fields2 = ["int64_2"]
|
||
expressions = []
|
||
for field1, field2 in zip(fields1, fields2):
|
||
expression = [
|
||
f"{field1} | {field2} == 1",
|
||
f"{field1} + {field2} <= 10 || {field1} - {field2} == 2",
|
||
f"{field1} * {field2} >= 8 && {field1} / {field2} < 2",
|
||
f"{field1} ** {field2} != 4 and {field1} + {field2} > 5",
|
||
f"{field1} not in {field2}",
|
||
f"{field1} in {field2}",
|
||
]
|
||
expressions.extend(expression)
|
||
return expressions
|
||
|
||
|
||
def gen_normal_string_expressions(fields=None):
|
||
if fields is None:
|
||
fields = [ct.default_string_field_name]
|
||
expressions = []
|
||
for field in fields:
|
||
expression = [
|
||
f"\"0\"< {field} < \"3\"",
|
||
f"{field} >= \"0\"",
|
||
f"({field} > \"0\" && {field} < \"100\") or ({field} > \"200\" && {field} < \"300\")",
|
||
f"\"0\" <= {field} <= \"100\"",
|
||
f"{field} == \"0\"|| {field} == \"1\"|| {field} ==\"2\"",
|
||
f"{field} != \"0\"",
|
||
f"{field} not in [\"0\", \"1\", \"2\"]",
|
||
f"{field} in [\"0\", \"1\", \"2\"]"
|
||
]
|
||
expressions.extend(expression)
|
||
return expressions
|
||
|
||
|
||
def gen_invalid_string_expressions():
|
||
expressions = [
|
||
"varchar in [0, \"1\"]",
|
||
"varchar not in [\"0\", 1, 2]"
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_normal_expressions_and_templates_field(field):
|
||
"""
|
||
Gen a list of filter in expression-format(as a string) and template-format(as a dict) for a field.
|
||
The two formats equals to each other.
|
||
"""
|
||
expressions_and_templates = [
|
||
["", {"expr": "", "expr_params": {}}],
|
||
[f"{field} > 0", {"expr": f"{field} > {{value_0}}", "expr_params": {"value_0": 0}}],
|
||
[f"({field} > 0 && {field} < 400) or ({field} > 500 && {field} < 1000)",
|
||
{"expr": f"({field} > {{value_0}} && {field} < {{value_1}}) or ({field} > {{value_2}} && {field} < {{value_3}})",
|
||
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 500, "value_3": 1000}}],
|
||
[f"{field} not in [1, 2, 3]", {"expr": f"{field} not in {{value_0}}", "expr_params": {"value_0": [1, 2, 3]}}],
|
||
[f"{field} in [1, 2, 3] and {field} != 2", {"expr": f"{field} in {{value_0}} and {field} != {{value_1}}", "expr_params": {"value_0": [1, 2, 3], "value_1": 2}}],
|
||
[f"{field} == 0 || {field} == 1 || {field} == 2", {"expr": f"{field} == {{value_0}} || {field} == {{value_1}} || {field} == {{value_2}}",
|
||
"expr_params": {"value_0": 0, "value_1": 1, "value_2": 2}}],
|
||
[f"0 < {field} < 400", {"expr": f"{{value_0}} < {field} < {{value_1}}", "expr_params": {"value_0": 0, "value_1": 400}}],
|
||
[f"500 <= {field} <= 1000", {"expr": f"{{value_0}} <= {field} <= {{value_1}}", "expr_params": {"value_0": 500, "value_1": 1000}}],
|
||
[f"200+300 <= {field} <= 500+500", {"expr": f"{{value_0}} <= {field} <= {{value_1}}", "expr_params": {"value_0": 200+300, "value_1": 500+500}}],
|
||
[f"{field} in [300/2, 900%40, -10*30+800, 2048/2%200, (100+200)*2]", {"expr": f"{field} in {{value_0}}", "expr_params": {"value_0": [300*1.0/2, 900*1.0%40, -10*30*1.0+800, 2048*1.0/2%200, (100+200)*1.0*2]}}],
|
||
[f"{field} in [+3**6, 2**10/2]", {"expr": f"{field} in {{value_0}}", "expr_params": {"value_0": [+3**6*1.0, 2**10*1.0/2]}}],
|
||
[f"{field} <= 4**5/2 && {field} > 500-1 && {field} != 500/2+260", {"expr": f"{field} <= {{value_0}} && {field} > {{value_1}} && {field} != {{value_2}}",
|
||
"expr_params": {"value_0": 4**5/2, "value_1": 500-1, "value_2": 500/2+260}}],
|
||
[f"{field} > 400 && {field} < 200", {"expr": f"{field} > {{value_0}} && {field} < {{value_1}}", "expr_params": {"value_0": 400, "value_1": 200}}],
|
||
[f"{field} < -2**8", {"expr": f"{field} < {{value_0}}", "expr_params": {"value_0": -2**8}}],
|
||
[f"({field} + 1) == 3 || {field} * 2 == 64 || {field} == 10**2", {"expr": f"({field} + {{value_0}}) == {{value_1}} || {field} * {{value_2}} == {{value_3}} || {field} == {{value_4}}",
|
||
"expr_params": {"value_0": 1, "value_1": 3, "value_2": 2, "value_3": 64, "value_4": 10**2}}]
|
||
]
|
||
return expressions_and_templates
|
||
|
||
|
||
def get_expr_from_template(template={}):
|
||
return template.get("expr", None)
|
||
|
||
|
||
def get_expr_params_from_template(template={}):
|
||
return template.get("expr_params", None)
|
||
|
||
|
||
def gen_integer_overflow_expressions():
|
||
expressions = [
|
||
"int8 < - 128",
|
||
"int8 > 127",
|
||
"int8 > -129 && int8 < 128",
|
||
"int16 < -32768",
|
||
"int16 >= 32768",
|
||
"int16 > -32769 && int16 <32768",
|
||
"int32 < -2147483648",
|
||
"int32 == 2147483648",
|
||
"int32 < 2147483648 || int32 == -2147483648",
|
||
"int8 in [-129, 1] || int16 in [32769] || int32 in [2147483650, 0]"
|
||
]
|
||
return expressions
|
||
|
||
|
||
def gen_modulo_expression(expr_fields):
|
||
exprs = []
|
||
for field in expr_fields:
|
||
exprs.extend([
|
||
(Expr.EQ(Expr.MOD(field, 10).subset, 1).value, field),
|
||
(Expr.LT(Expr.MOD(field, 17).subset, 9).value, field),
|
||
(Expr.LE(Expr.MOD(field, 100).subset, 50).value, field),
|
||
(Expr.GT(Expr.MOD(field, 50).subset, 40).value, field),
|
||
(Expr.GE(Expr.MOD(field, 29).subset, 15).value, field),
|
||
(Expr.NE(Expr.MOD(field, 29).subset, 10).value, field),
|
||
])
|
||
return exprs
|
||
|
||
|
||
def count_match_expr(values_l: list, rex_l: str, op: str, values_r: list, rex_r: str) -> list:
|
||
if len(values_l) != len(values_r):
|
||
raise ValueError(f"[count_match_expr] values not equal: {len(values_l)} != {len(values_r)}")
|
||
|
||
res = []
|
||
if op in ['and', '&&']:
|
||
for i in range(len(values_l)):
|
||
if re.search(rex_l, values_l[i]) and re.search(rex_r, values_r[i]):
|
||
res.append(i)
|
||
|
||
elif op in ['or', '||']:
|
||
for i in range(len(values_l)):
|
||
if re.search(rex_l, values_l[i]) or re.search(rex_r, values_r[i]):
|
||
res.append(i)
|
||
|
||
else:
|
||
raise ValueError(f"[count_match_expr] Not support op: {op}")
|
||
return res
|
||
|
||
|
||
def gen_varchar_expression(expr_fields):
|
||
exprs = []
|
||
for field in expr_fields:
|
||
exprs.extend([
|
||
(Expr.like(field, "a%").value, field, r'^a.*'),
|
||
(Expr.LIKE(field, "%b").value, field, r'.*b$'),
|
||
(Expr.AND(Expr.like(field, "%b").subset, Expr.LIKE(field, "z%").subset).value, field, r'^z.*b$'),
|
||
(Expr.And(Expr.like(field, "i%").subset, Expr.LIKE(field, "%j").subset).value, field, r'^i.*j$'),
|
||
(Expr.OR(Expr.like(field, "%h%").subset, Expr.LIKE(field, "%jo").subset).value, field, fr'(?:h.*|.*jo$)'),
|
||
(Expr.Or(Expr.like(field, "ip%").subset, Expr.LIKE(field, "%yu%").subset).value, field, fr'(?:^ip.*|.*yu)'),
|
||
])
|
||
return exprs
|
||
|
||
|
||
def gen_varchar_operation(expr_fields):
|
||
exprs = []
|
||
for field in expr_fields:
|
||
exprs.extend([
|
||
(Expr.EQ(field, '"a"').value, field, r'a'),
|
||
(Expr.GT(field, '"a"').value, field, r'[^a]'),
|
||
(Expr.GE(field, '"a"').value, field, r'.*'),
|
||
(Expr.LT(field, '"z"').value, field, r'[^z]'),
|
||
(Expr.LE(field, '"z"').value, field, r'.*')
|
||
])
|
||
return exprs
|
||
|
||
|
||
def gen_varchar_unicode_expression(expr_fields):
|
||
exprs = []
|
||
for field in expr_fields:
|
||
exprs.extend([
|
||
(Expr.like(field, "国%").value, field, r'^国.*'),
|
||
(Expr.LIKE(field, "%中").value, field, r'.*中$'),
|
||
(Expr.AND(Expr.like(field, "%江").subset, Expr.LIKE(field, "麚%").subset).value, field, r'^麚.*江$'),
|
||
(Expr.And(Expr.like(field, "鄷%").subset, Expr.LIKE(field, "%薞").subset).value, field, r'^鄷.*薞$'),
|
||
(Expr.OR(Expr.like(field, "%核%").subset, Expr.LIKE(field, "%臥蜜").subset).value, field, fr'(?:核.*|.*臥蜜$)'),
|
||
(Expr.Or(Expr.like(field, "咴矷%").subset, Expr.LIKE(field, "%濉蠬%").subset).value, field, fr'(?:^咴矷.*|.*濉蠬)'),
|
||
])
|
||
return exprs
|
||
|
||
|
||
def gen_varchar_unicode_expression_array(expr_fields):
|
||
exprs = []
|
||
for field in expr_fields:
|
||
exprs.extend([
|
||
ExprCheckParams(field, Expr.ARRAY_CONTAINS(field, '"中"').value, 'set(["中"]).issubset({0})'),
|
||
ExprCheckParams(field, Expr.array_contains(field, '"国"').value, 'set(["国"]).issubset({0})'),
|
||
ExprCheckParams(field, Expr.ARRAY_CONTAINS_ALL(field, ["华"]).value, 'set(["华"]).issubset({0})'),
|
||
ExprCheckParams(field, Expr.array_contains_all(field, ["中", "国"]).value, 'set(["中", "国"]).issubset({0})'),
|
||
ExprCheckParams(field, Expr.ARRAY_CONTAINS_ANY(field, ["紅"]).value, 'not set(["紅"]).isdisjoint({0})'),
|
||
ExprCheckParams(field, Expr.array_contains_any(field, ["紅", "父", "环", "稵"]).value,
|
||
'not set(["紅", "父", "环", "稵"]).isdisjoint({0})'),
|
||
ExprCheckParams(field, Expr.AND(Expr.ARRAY_CONTAINS(field, '"噜"').value,
|
||
Expr.ARRAY_CONTAINS_ANY(field, ["浮", "沮", "茫"]).value).value,
|
||
'set(["噜"]).issubset({0}) and not set(["浮", "沮", "茫"]).isdisjoint({0})'),
|
||
ExprCheckParams(field, Expr.And(Expr.ARRAY_CONTAINS_ALL(field, ["爤"]).value,
|
||
Expr.array_contains_any(field, ["暁", "非", "鸳", "丹"]).value).value,
|
||
'set(["爤"]).issubset({0}) and not set(["暁", "非", "鸳", "丹"]).isdisjoint({0})'),
|
||
ExprCheckParams(field, Expr.OR(Expr.array_contains(field, '"草"').value,
|
||
Expr.array_contains_all(field, ["昩", "苴"]).value).value,
|
||
'set(["草"]).issubset({0}) or set(["昩", "苴"]).issubset({0})'),
|
||
ExprCheckParams(field, Expr.Or(Expr.ARRAY_CONTAINS_ANY(field, ["魡", "展", "隶", "韀", "脠", "噩"]).value,
|
||
Expr.array_contains_any(field, ["备", "嘎", "蝐", "秦", "万"]).value).value,
|
||
'not set(["魡", "展", "隶", "韀", "脠", "噩"]).isdisjoint({0}) or ' +
|
||
'not set(["备", "嘎", "蝐", "秦", "万"]).isdisjoint({0})')
|
||
])
|
||
return exprs
|
||
|
||
|
||
def gen_number_operation(expr_fields):
|
||
exprs = []
|
||
for field in expr_fields:
|
||
exprs.extend([
|
||
(Expr.LT(Expr.ADD(field, 23), 100).value, field),
|
||
(Expr.LT(Expr.ADD(-23, field), 121).value, field),
|
||
(Expr.LE(Expr.SUB(field, 123), 99).value, field),
|
||
(Expr.GT(Expr.MUL(field, 2), 88).value, field),
|
||
(Expr.GT(Expr.MUL(3, field), 137).value, field),
|
||
(Expr.GE(Expr.DIV(field, 30), 20).value, field),
|
||
])
|
||
return exprs
|
||
|
||
|
||
def l2(x, y):
|
||
return np.linalg.norm(np.array(x) - np.array(y))
|
||
|
||
|
||
def ip(x, y):
|
||
return np.inner(np.array(x), np.array(y))
|
||
|
||
|
||
def cosine(x, y):
|
||
return np.dot(x, y)/(np.linalg.norm(x)*np.linalg.norm(y))
|
||
|
||
|
||
def jaccard(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
||
|
||
|
||
def hamming(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return np.bitwise_xor(x, y).sum()
|
||
|
||
|
||
def tanimoto(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
res = np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
|
||
if res == 0:
|
||
value = float("inf")
|
||
else:
|
||
value = -np.log2(res)
|
||
return value
|
||
|
||
|
||
def tanimoto_calc(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return np.double((len(x) - np.bitwise_xor(x, y).sum())) / (len(y) + np.bitwise_xor(x, y).sum())
|
||
|
||
|
||
def substructure(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y)
|
||
|
||
|
||
def superstructure(x, y):
|
||
x = np.asarray(x, np.bool_)
|
||
y = np.asarray(y, np.bool_)
|
||
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x)
|
||
|
||
|
||
def compare_distance_2d_vector(x, y, distance, metric, sqrt):
|
||
for i in range(len(x)):
|
||
for j in range(len(y)):
|
||
if metric == "L2":
|
||
distance_i = l2(x[i], y[j])
|
||
if not sqrt:
|
||
distance_i = math.pow(distance_i, 2)
|
||
elif metric == "IP":
|
||
distance_i = ip(x[i], y[j])
|
||
elif metric == "HAMMING":
|
||
distance_i = hamming(x[i], y[j])
|
||
elif metric == "TANIMOTO":
|
||
distance_i = tanimoto_calc(x[i], y[j])
|
||
elif metric == "JACCARD":
|
||
distance_i = jaccard(x[i], y[j])
|
||
else:
|
||
raise Exception("metric type is invalid")
|
||
assert abs(distance_i - distance[i][j]) < ct.epsilon
|
||
|
||
return True
|
||
|
||
|
||
def compare_distance_vector_and_vector_list(x, y, metric, distance):
|
||
"""
|
||
target: compare the distance between x and y[i] with the expected distance array
|
||
method: compare the distance between x and y[i] with the expected distance array
|
||
expected: return true if all distances are matched
|
||
"""
|
||
if not isinstance(y, list):
|
||
log.error("%s is not a list." % str(y))
|
||
assert False
|
||
for i in range(len(y)):
|
||
if metric == "L2":
|
||
distance_i = l2(x, y[i])
|
||
elif metric == "IP":
|
||
distance_i = ip(x, y[i])
|
||
elif metric == "COSINE":
|
||
distance_i = cosine(x, y[i])
|
||
else:
|
||
raise Exception("metric type is invalid")
|
||
if abs(distance_i - distance[i]) > ct.epsilon:
|
||
log.error("The distance between %f and %f is not equal with %f" % (x, y[i], distance[i]))
|
||
assert abs(distance_i - distance[i]) < ct.epsilon
|
||
|
||
return True
|
||
|
||
|
||
def modify_file(file_path_list, is_modify=False, input_content=""):
|
||
"""
|
||
file_path_list : file list -> list[<file_path>]
|
||
is_modify : does the file need to be reset
|
||
input_content :the content that need to insert to the file
|
||
"""
|
||
if not isinstance(file_path_list, list):
|
||
log.error("[modify_file] file is not a list.")
|
||
|
||
for file_path in file_path_list:
|
||
folder_path, file_name = os.path.split(file_path)
|
||
if not os.path.isdir(folder_path):
|
||
log.debug("[modify_file] folder(%s) is not exist." % folder_path)
|
||
os.makedirs(folder_path)
|
||
|
||
if not os.path.isfile(file_path):
|
||
log.error("[modify_file] file(%s) is not exist." % file_path)
|
||
else:
|
||
if is_modify is True:
|
||
log.debug("[modify_file] start modifying file(%s)..." % file_path)
|
||
with open(file_path, "r+") as f:
|
||
f.seek(0)
|
||
f.truncate()
|
||
f.write(input_content)
|
||
f.close()
|
||
log.info("[modify_file] file(%s) modification is complete." % file_path_list)
|
||
|
||
|
||
def index_to_dict(index):
|
||
return {
|
||
"collection_name": index.collection_name,
|
||
"field_name": index.field_name,
|
||
# "name": index.name,
|
||
"params": index.params
|
||
}
|
||
|
||
|
||
def get_index_params_params(index_type):
|
||
"""get default params of index params by index type"""
|
||
return ct.default_all_indexes_params[ct.all_index_types.index(index_type)].copy()
|
||
|
||
|
||
def get_search_params_params(index_type):
|
||
"""get default params of search params by index type"""
|
||
return ct.default_all_search_params_params[ct.all_index_types.index(index_type)].copy()
|
||
|
||
|
||
def assert_json_contains(expr, list_data):
|
||
opposite = False
|
||
if expr.startswith("not"):
|
||
opposite = True
|
||
expr = expr.split("not ", 1)[1]
|
||
result_ids = []
|
||
expr_prefix = expr.split('(', 1)[0]
|
||
exp_ids = eval(expr.split(', ', 1)[1].split(')', 1)[0])
|
||
if expr_prefix in ["json_contains", "JSON_CONTAINS", "array_contains", "ARRAY_CONTAINS"]:
|
||
for i in range(len(list_data)):
|
||
if exp_ids in list_data[i]:
|
||
result_ids.append(i)
|
||
elif expr_prefix in ["json_contains_all", "JSON_CONTAINS_ALL", "array_contains_all", "ARRAY_CONTAINS_ALL"]:
|
||
for i in range(len(list_data)):
|
||
set_list_data = set(tuple(element) if isinstance(element, list) else element for element in list_data[i])
|
||
if set(exp_ids).issubset(set_list_data):
|
||
result_ids.append(i)
|
||
elif expr_prefix in ["json_contains_any", "JSON_CONTAINS_ANY", "array_contains_any", "ARRAY_CONTAINS_ANY"]:
|
||
for i in range(len(list_data)):
|
||
set_list_data = set(tuple(element) if isinstance(element, list) else element for element in list_data[i])
|
||
if set(exp_ids) & set_list_data:
|
||
result_ids.append(i)
|
||
else:
|
||
log.warning("unknown expr: %s" % expr)
|
||
if opposite:
|
||
result_ids = [i for i in range(len(list_data)) if i not in result_ids]
|
||
return result_ids
|
||
|
||
|
||
def assert_equal_index(index_1, index_2):
|
||
return index_to_dict(index_1) == index_to_dict(index_2)
|
||
|
||
|
||
def gen_partitions(collection_w, partition_num=1):
|
||
"""
|
||
target: create extra partitions except for _default
|
||
method: create more than one partitions
|
||
expected: return collection and raw data
|
||
"""
|
||
log.info("gen_partitions: creating partitions")
|
||
for i in range(partition_num):
|
||
partition_name = "search_partition_" + str(i)
|
||
collection_w.create_partition(partition_name=partition_name,
|
||
description="search partition")
|
||
par = collection_w.partitions
|
||
assert len(par) == (partition_num + 1)
|
||
log.info("gen_partitions: created partitions %s" % par)
|
||
|
||
|
||
def insert_data(collection_w, nb=ct.default_nb, is_binary=False, is_all_data_type=False,
|
||
auto_id=False, dim=ct.default_dim, insert_offset=0, enable_dynamic_field=False, with_json=True,
|
||
random_primary_key=False, multiple_dim_array=[], primary_field=ct.default_int64_field_name,
|
||
vector_data_type="FLOAT_VECTOR", nullable_fields={}, language=None):
|
||
"""
|
||
target: insert non-binary/binary data
|
||
method: insert non-binary/binary data into partitions if any
|
||
expected: return collection and raw data
|
||
"""
|
||
par = collection_w.partitions
|
||
num = len(par)
|
||
vectors = []
|
||
binary_raw_vectors = []
|
||
insert_ids = []
|
||
start = insert_offset
|
||
log.info(f"inserting {nb} data into collection {collection_w.name}")
|
||
# extract the vector field name list
|
||
vector_name_list = extract_vector_field_name_list(collection_w)
|
||
# prepare data
|
||
for i in range(num):
|
||
log.debug("Dynamic field is enabled: %s" % enable_dynamic_field)
|
||
if not is_binary:
|
||
if not is_all_data_type:
|
||
if not enable_dynamic_field:
|
||
if vector_data_type == "FLOAT_VECTOR":
|
||
default_data = gen_default_dataframe_data(nb // num, dim=dim, start=start, with_json=with_json,
|
||
random_primary_key=random_primary_key,
|
||
multiple_dim_array=multiple_dim_array,
|
||
multiple_vector_field_name=vector_name_list,
|
||
vector_data_type=vector_data_type,
|
||
auto_id=auto_id, primary_field=primary_field,
|
||
nullable_fields=nullable_fields, language=language)
|
||
elif vector_data_type in ct.append_vector_type:
|
||
default_data = gen_default_list_data(nb // num, dim=dim, start=start, with_json=with_json,
|
||
random_primary_key=random_primary_key,
|
||
multiple_dim_array=multiple_dim_array,
|
||
multiple_vector_field_name=vector_name_list,
|
||
vector_data_type=vector_data_type,
|
||
auto_id=auto_id, primary_field=primary_field,
|
||
nullable_fields=nullable_fields, language=language)
|
||
|
||
else:
|
||
default_data = gen_default_rows_data(nb // num, dim=dim, start=start, with_json=with_json,
|
||
multiple_dim_array=multiple_dim_array,
|
||
multiple_vector_field_name=vector_name_list,
|
||
vector_data_type=vector_data_type,
|
||
auto_id=auto_id, primary_field=primary_field,
|
||
nullable_fields=nullable_fields, language=language)
|
||
|
||
else:
|
||
if not enable_dynamic_field:
|
||
if vector_data_type == "FLOAT_VECTOR":
|
||
default_data = gen_general_list_all_data_type(nb // num, dim=dim, start=start, with_json=with_json,
|
||
random_primary_key=random_primary_key,
|
||
multiple_dim_array=multiple_dim_array,
|
||
multiple_vector_field_name=vector_name_list,
|
||
auto_id=auto_id, primary_field=primary_field,
|
||
nullable_fields=nullable_fields, language=language)
|
||
elif vector_data_type == "FLOAT16_VECTOR" or "BFLOAT16_VECTOR":
|
||
default_data = gen_general_list_all_data_type(nb // num, dim=dim, start=start, with_json=with_json,
|
||
random_primary_key=random_primary_key,
|
||
multiple_dim_array=multiple_dim_array,
|
||
multiple_vector_field_name=vector_name_list,
|
||
auto_id=auto_id, primary_field=primary_field,
|
||
nullable_fields=nullable_fields, language=language)
|
||
else:
|
||
if os.path.exists(ct.rows_all_data_type_file_path + f'_{i}' + f'_dim{dim}.txt'):
|
||
with open(ct.rows_all_data_type_file_path + f'_{i}' + f'_dim{dim}.txt', 'rb') as f:
|
||
default_data = pickle.load(f)
|
||
else:
|
||
default_data = gen_default_rows_data_all_data_type(nb // num, dim=dim, start=start,
|
||
with_json=with_json,
|
||
multiple_dim_array=multiple_dim_array,
|
||
multiple_vector_field_name=vector_name_list,
|
||
partition_id=i, auto_id=auto_id,
|
||
primary_field=primary_field,
|
||
language=language)
|
||
else:
|
||
default_data, binary_raw_data = gen_default_binary_dataframe_data(nb // num, dim=dim, start=start,
|
||
auto_id=auto_id,
|
||
primary_field=primary_field,
|
||
nullable_fields=nullable_fields,
|
||
language=language)
|
||
binary_raw_vectors.extend(binary_raw_data)
|
||
insert_res = collection_w.insert(default_data, par[i].name)[0]
|
||
log.info(f"inserted {nb // num} data into collection {collection_w.name}")
|
||
time_stamp = insert_res.timestamp
|
||
insert_ids.extend(insert_res.primary_keys)
|
||
vectors.append(default_data)
|
||
start += nb // num
|
||
return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp
|
||
|
||
|
||
def _check_primary_keys(primary_keys, nb):
|
||
if primary_keys is None:
|
||
raise Exception("The primary_keys is None")
|
||
assert len(primary_keys) == nb
|
||
for i in range(nb - 1):
|
||
if primary_keys[i] >= primary_keys[i + 1]:
|
||
return False
|
||
return True
|
||
|
||
|
||
def get_segment_distribution(res):
|
||
"""
|
||
Get segment distribution
|
||
"""
|
||
from collections import defaultdict
|
||
segment_distribution = defaultdict(lambda: {"sealed": []})
|
||
for r in res:
|
||
for node_id in r.nodeIds:
|
||
if r.state == 3:
|
||
segment_distribution[node_id]["sealed"].append(r.segmentID)
|
||
|
||
return segment_distribution
|
||
|
||
|
||
def percent_to_int(string):
|
||
"""
|
||
transform percent(0%--100%) to int
|
||
"""
|
||
|
||
new_int = -1
|
||
if not isinstance(string, str):
|
||
log.error("%s is not a string" % string)
|
||
return new_int
|
||
if "%" not in string:
|
||
log.error("%s is not a percent" % string)
|
||
else:
|
||
new_int = int(string.strip("%"))
|
||
|
||
return new_int
|
||
|
||
|
||
def gen_grant_list(collection_name):
|
||
grant_list = [{"object": "Collection", "object_name": collection_name, "privilege": "Load"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Release"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Compaction"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Delete"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "GetStatistics"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "CreateIndex"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "IndexDetail"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "DropIndex"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Search"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Flush"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Query"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "LoadBalance"},
|
||
{"object": "Collection", "object_name": collection_name, "privilege": "Import"},
|
||
{"object": "Global", "object_name": "*", "privilege": "All"},
|
||
{"object": "Global", "object_name": "*", "privilege": "CreateCollection"},
|
||
{"object": "Global", "object_name": "*", "privilege": "DropCollection"},
|
||
{"object": "Global", "object_name": "*", "privilege": "DescribeCollection"},
|
||
{"object": "Global", "object_name": "*", "privilege": "ShowCollections"},
|
||
{"object": "Global", "object_name": "*", "privilege": "CreateOwnership"},
|
||
{"object": "Global", "object_name": "*", "privilege": "DropOwnership"},
|
||
{"object": "Global", "object_name": "*", "privilege": "SelectOwnership"},
|
||
{"object": "Global", "object_name": "*", "privilege": "ManageOwnership"},
|
||
{"object": "User", "object_name": "*", "privilege": "UpdateUser"},
|
||
{"object": "User", "object_name": "*", "privilege": "SelectUser"}]
|
||
return grant_list
|
||
|
||
|
||
def install_milvus_operator_specific_config(namespace, milvus_mode, release_name, image,
|
||
rate_limit_enable, collection_rate_limit):
|
||
"""
|
||
namespace : str
|
||
milvus_mode : str -> standalone or cluster
|
||
release_name : str
|
||
image: str -> image tag including repository
|
||
rate_limit_enable: str -> true or false, switch for rate limit
|
||
collection_rate_limit: int -> collection rate limit numbers
|
||
input_content :the content that need to insert to the file
|
||
return: milvus host name
|
||
"""
|
||
|
||
if not isinstance(namespace, str):
|
||
log.error("[namespace] is not a string.")
|
||
|
||
if not isinstance(milvus_mode, str):
|
||
log.error("[milvus_mode] is not a string.")
|
||
|
||
if not isinstance(release_name, str):
|
||
log.error("[release_name] is not a string.")
|
||
|
||
if not isinstance(image, str):
|
||
log.error("[image] is not a string.")
|
||
|
||
if not isinstance(rate_limit_enable, str):
|
||
log.error("[rate_limit_enable] is not a string.")
|
||
|
||
if not isinstance(collection_rate_limit, int):
|
||
log.error("[collection_rate_limit] is not an integer.")
|
||
|
||
if milvus_mode not in ["standalone", "cluster"]:
|
||
log.error("[milvus_mode] is not 'standalone' or 'cluster'")
|
||
|
||
if rate_limit_enable not in ["true", "false"]:
|
||
log.error("[rate_limit_enable] is not 'true' or 'false'")
|
||
|
||
data_config = {
|
||
'metadata.namespace': namespace,
|
||
'spec.mode': milvus_mode,
|
||
'metadata.name': release_name,
|
||
'spec.components.image': image,
|
||
'spec.components.proxy.serviceType': 'LoadBalancer',
|
||
'spec.components.dataNode.replicas': 2,
|
||
'spec.config.common.retentionDuration': 60,
|
||
'spec.config.quotaAndLimits.enable': rate_limit_enable,
|
||
'spec.config.quotaAndLimits.ddl.collectionRate': collection_rate_limit,
|
||
}
|
||
mil = MilvusOperator()
|
||
mil.install(data_config)
|
||
if mil.wait_for_healthy(release_name, NAMESPACE, timeout=TIMEOUT):
|
||
host = mic.endpoint(release_name, NAMESPACE).split(':')[0]
|
||
else:
|
||
raise MilvusException(message=f'Milvus healthy timeout 1800s')
|
||
|
||
return host
|
||
|
||
|
||
def get_wildcard_output_field_names(collection_w, output_fields):
|
||
all_fields = [field.name for field in collection_w.schema.fields]
|
||
output_fields = output_fields.copy()
|
||
if "*" in output_fields:
|
||
output_fields.remove("*")
|
||
output_fields.extend(all_fields)
|
||
return output_fields
|
||
|
||
|
||
def extract_vector_field_name_list(collection_w):
|
||
"""
|
||
extract the vector field name list
|
||
collection_w : the collection object to be extracted thea name of all the vector fields
|
||
return: the vector field name list without the default float vector field name
|
||
"""
|
||
schema_dict = collection_w.schema.to_dict()
|
||
fields = schema_dict.get('fields')
|
||
vector_name_list = []
|
||
for field in fields:
|
||
if field['type'] == DataType.FLOAT_VECTOR \
|
||
or field['type'] == DataType.FLOAT16_VECTOR \
|
||
or field['type'] == DataType.BFLOAT16_VECTOR \
|
||
or field['type'] == DataType.SPARSE_FLOAT_VECTOR:
|
||
if field['name'] != ct.default_float_vec_field_name:
|
||
vector_name_list.append(field['name'])
|
||
|
||
return vector_name_list
|
||
|
||
|
||
def get_activate_func_from_metric_type(metric_type):
|
||
activate_function = lambda x: x
|
||
if metric_type == "COSINE":
|
||
activate_function = lambda x: (1 + x) * 0.5
|
||
elif metric_type == "IP":
|
||
activate_function = lambda x: 0.5 + math.atan(x)/ math.pi
|
||
elif metric_type == "BM25":
|
||
activate_function = lambda x: 2 * math.atan(x) / math.pi
|
||
else:
|
||
activate_function = lambda x: 1.0 - 2*math.atan(x) / math.pi
|
||
return activate_function
|
||
|
||
|
||
def get_hybrid_search_base_results_rrf(search_res_dict_array, round_decimal=-1):
|
||
"""
|
||
merge the element in the dicts array
|
||
search_res_dict_array : the dict array in which the elements to be merged
|
||
return: the sorted id and score answer
|
||
"""
|
||
# calculate hybrid search base line
|
||
|
||
search_res_dict_merge = {}
|
||
ids_answer = []
|
||
score_answer = []
|
||
|
||
for i, result in enumerate(search_res_dict_array, 0):
|
||
for key, distance in result.items():
|
||
search_res_dict_merge[key] = search_res_dict_merge.get(key, 0) + distance
|
||
|
||
if round_decimal != -1 :
|
||
for k, v in search_res_dict_merge.items():
|
||
multiplier = math.pow(10.0, round_decimal)
|
||
v = math.floor(v*multiplier+0.5) / multiplier
|
||
search_res_dict_merge[k] = v
|
||
|
||
sorted_list = sorted(search_res_dict_merge.items(), key=lambda x: x[1], reverse=True)
|
||
|
||
for sort in sorted_list:
|
||
ids_answer.append(int(sort[0]))
|
||
score_answer.append(float(sort[1]))
|
||
|
||
return ids_answer, score_answer
|
||
|
||
|
||
def get_hybrid_search_base_results(search_res_dict_array, weights, metric_types, round_decimal=-1):
|
||
"""
|
||
merge the element in the dicts array
|
||
search_res_dict_array : the dict array in which the elements to be merged
|
||
return: the sorted id and score answer
|
||
"""
|
||
# calculate hybrid search base line
|
||
|
||
search_res_dict_merge = {}
|
||
ids_answer = []
|
||
score_answer = []
|
||
|
||
for i, result in enumerate(search_res_dict_array, 0):
|
||
activate_function = get_activate_func_from_metric_type(metric_types[i])
|
||
for key, distance in result.items():
|
||
activate_distance = activate_function(distance)
|
||
weight = weights[i]
|
||
search_res_dict_merge[key] = search_res_dict_merge.get(key, 0) + activate_function(distance) * weights[i]
|
||
|
||
if round_decimal != -1 :
|
||
for k, v in search_res_dict_merge.items():
|
||
multiplier = math.pow(10.0, round_decimal)
|
||
v = math.floor(v*multiplier+0.5) / multiplier
|
||
search_res_dict_merge[k] = v
|
||
|
||
sorted_list = sorted(search_res_dict_merge.items(), key=lambda x: x[1], reverse=True)
|
||
|
||
for sort in sorted_list:
|
||
ids_answer.append(int(sort[0]))
|
||
score_answer.append(float(sort[1]))
|
||
|
||
return ids_answer, score_answer
|
||
|
||
|
||
def gen_bf16_vectors(num, dim):
|
||
"""
|
||
generate brain float16 vector data
|
||
raw_vectors : the vectors
|
||
bf16_vectors: the bytes used for insert
|
||
return: raw_vectors and bf16_vectors
|
||
"""
|
||
raw_vectors = []
|
||
bf16_vectors = []
|
||
for _ in range(num):
|
||
raw_vector = [random.random() for _ in range(dim)]
|
||
raw_vectors.append(raw_vector)
|
||
bf16_vector = np.array(raw_vector, dtype=bfloat16)
|
||
bf16_vectors.append(bf16_vector)
|
||
|
||
return raw_vectors, bf16_vectors
|
||
|
||
|
||
def gen_fp16_vectors(num, dim):
|
||
"""
|
||
generate float16 vector data
|
||
raw_vectors : the vectors
|
||
fp16_vectors: the bytes used for insert
|
||
return: raw_vectors and fp16_vectors
|
||
"""
|
||
raw_vectors = []
|
||
fp16_vectors = []
|
||
for _ in range(num):
|
||
raw_vector = [random.random() for _ in range(dim)]
|
||
raw_vectors.append(raw_vector)
|
||
fp16_vector = np.array(raw_vector, dtype=np.float16)
|
||
fp16_vectors.append(fp16_vector)
|
||
|
||
return raw_vectors, fp16_vectors
|
||
|
||
|
||
def gen_sparse_vectors(nb, dim=1000, sparse_format="dok"):
|
||
# default sparse format is dok, dict of keys
|
||
# another option is coo, coordinate List
|
||
|
||
rng = np.random.default_rng()
|
||
vectors = [{
|
||
d: rng.random() for d in list(set(random.sample(range(dim), random.randint(20, 30)) + [0, 1]))
|
||
} for _ in range(nb)]
|
||
if sparse_format == "coo":
|
||
vectors = [
|
||
{"indices": list(x.keys()), "values": list(x.values())} for x in vectors
|
||
]
|
||
return vectors
|
||
|
||
|
||
def gen_vectors_based_on_vector_type(num, dim, vector_data_type=ct.float_type):
|
||
"""
|
||
generate float16 vector data
|
||
raw_vectors : the vectors
|
||
fp16_vectors: the bytes used for insert
|
||
return: raw_vectors and fp16_vectors
|
||
"""
|
||
if vector_data_type == ct.float_type:
|
||
vectors = [[random.random() for _ in range(dim)] for _ in range(num)]
|
||
elif vector_data_type == ct.float16_type:
|
||
vectors = gen_fp16_vectors(num, dim)[1]
|
||
elif vector_data_type == ct.bfloat16_type:
|
||
vectors = gen_bf16_vectors(num, dim)[1]
|
||
elif vector_data_type == ct.sparse_vector:
|
||
vectors = gen_sparse_vectors(num, dim)
|
||
elif vector_data_type == ct.text_sparse_vector:
|
||
vectors = gen_text_vectors(num)
|
||
else:
|
||
raise Exception("vector_data_type is invalid")
|
||
return vectors
|
||
|
||
|
||
def field_types() -> dict:
|
||
return dict(sorted(dict(DataType.__members__).items(), key=lambda item: item[0], reverse=True))
|
||
|
||
|
||
def get_array_element_type(data_type: str):
|
||
if hasattr(DataType, "ARRAY") and data_type.startswith(DataType.ARRAY.name):
|
||
element_type = data_type.lstrip(DataType.ARRAY.name).lstrip("_")
|
||
for _field in field_types().keys():
|
||
if str(element_type).upper().startswith(_field):
|
||
return _field, getattr(DataType, _field)
|
||
raise ValueError(f"[get_array_data_type] Can't find element type:{element_type} for array:{data_type}")
|
||
raise ValueError(f"[get_array_data_type] Data type is not start with array: {data_type}")
|
||
|
||
|
||
def set_field_schema(field: str, params: dict):
|
||
for k, v in field_types().items():
|
||
if str(field).upper().startswith(k):
|
||
_kwargs = {}
|
||
|
||
_field_element, _data_type = k, DataType.NONE
|
||
if hasattr(DataType, "ARRAY") and _field_element == DataType.ARRAY.name:
|
||
_field_element, _data_type = get_array_element_type(field)
|
||
_kwargs.update({"max_capacity": ct.default_max_capacity, "element_type": _data_type})
|
||
|
||
if _field_element in [DataType.STRING.name, DataType.VARCHAR.name]:
|
||
_kwargs.update({"max_length": ct.default_length})
|
||
|
||
elif _field_element in [DataType.BINARY_VECTOR.name, DataType.FLOAT_VECTOR.name,
|
||
DataType.FLOAT16_VECTOR.name, DataType.BFLOAT16_VECTOR.name]:
|
||
_kwargs.update({"dim": ct.default_dim})
|
||
|
||
if isinstance(params, dict):
|
||
_kwargs.update(params)
|
||
else:
|
||
raise ValueError(
|
||
f"[set_field_schema] Field `{field}` params is not a dict, type: {type(params)}, params: {params}")
|
||
return ApiFieldSchemaWrapper().init_field_schema(name=field, dtype=v, **_kwargs)[0]
|
||
raise ValueError(f"[set_field_schema] Can't set field:`{field}` schema: {params}")
|
||
|
||
|
||
def set_collection_schema(fields: list, field_params: dict = {}, **kwargs):
|
||
"""
|
||
:param fields: List[str]
|
||
:param field_params: {<field name>: dict<field params>}
|
||
int64_1:
|
||
is_primary: bool
|
||
description: str
|
||
varchar_1:
|
||
is_primary: bool
|
||
description: str
|
||
max_length: int = 65535
|
||
varchar_2:
|
||
max_length: int = 100
|
||
is_partition_key: bool
|
||
array_int8_1:
|
||
max_capacity: int = 100
|
||
array_varchar_1:
|
||
max_capacity: int = 100
|
||
max_length: int = 65535
|
||
float_vector:
|
||
dim: int = 128
|
||
:param kwargs: <params for collection schema>
|
||
description: str
|
||
primary_field: str
|
||
auto_id: bool
|
||
enable_dynamic_field: bool
|
||
num_partitions: int
|
||
"""
|
||
field_schemas = [set_field_schema(field=field, params=field_params.get(field, {})) for field in fields]
|
||
return ApiCollectionSchemaWrapper().init_collection_schema(fields=field_schemas, **kwargs)[0]
|
||
|
||
|
||
def check_key_exist(source: dict, target: dict):
|
||
global flag
|
||
flag = True
|
||
|
||
def check_keys(_source, _target):
|
||
global flag
|
||
for key, value in _source.items():
|
||
if key in _target and isinstance(value, dict):
|
||
check_keys(_source[key], _target[key])
|
||
elif key not in _target:
|
||
log.error("[check_key_exist] Key: '{0}' not in target: {1}".format(key, _target))
|
||
flag = False
|
||
|
||
check_keys(source, target)
|
||
return flag
|
||
|
||
|
||
def gen_unicode_string():
|
||
return chr(random.randint(0x4e00, 0x9fbf))
|
||
|
||
|
||
def gen_unicode_string_batch(nb, string_len: int = 1):
|
||
return [''.join([gen_unicode_string() for _ in range(string_len)]) for _ in range(nb)]
|
||
|
||
|
||
def gen_unicode_string_array_batch(nb, string_len: int = 1, max_capacity: int = ct.default_max_capacity):
|
||
return [[''.join([gen_unicode_string() for _ in range(min(random.randint(1, string_len), 50))]) for _ in
|
||
range(random.randint(0, max_capacity))] for _ in range(nb)]
|